MAT137 - Volumes

- Reminder: Test 3 is this Thursday.
- See the course website for info about Test 3, including what material it will cover.
- Today's lecture will assume you have watched videos 10.1-10.2

For Tuesday's lecture, watch videos 11.1-11.2

Irreducible quadratics

(1) Calculate $\int \frac{1}{x^{2}+1} d x$ and $\int \frac{x}{x^{2}+1} d x$.

Hint: These two are very short.
(2) Calculate $\int \frac{2 x+3}{x^{2}+1} d x$
(3) Calculate $\int \frac{x^{2}}{x^{2}+1} d x$
(9) Calculate $\int \frac{2 x+1}{x^{2}+x+1} d x$
(5) Calculate $\int \frac{x}{x^{2}+x+1} d x$

Hint: Transform it into one like the previous ones

An equation for volumes by "slicing" (like a carrot!)

You saw a specific example of this in the videos. Now let's do it in general!

Problem. Let $a<b$ be real numbers.
Let f be a continuous, positive function defined on $[a, b]$.
Let A be the region in the first quadrant bounded between the graph of f and the x-axis.

Find a formula for the volume of the solid of revolution obtained by rotating the region A around the x-axis.

The volume of a sphere

You already know a formula for the volume of a sphere with radius R. Now you can prove it!
(1) Write the equation for a circle with radius R centered at the origin.
(2) If you rotate this circle around the x-axis, it will produce a sphere. Compute its volume as an integral by slicing it (like a carrot!).

The volume of a pyramid

Problem. Compute the volume of a pyramid with height H and square base with side length L.

Hint 1: Slice the pyramid (like a carrot!) with cuts parallel to the base.

Hint 2: You may need to think about similar triangles.

Different axes of rotation

Let A be the region in the first quadrant bounded between the curves with equations $y=x^{3}$ and $y=\sqrt{32 x}$.

Compute the volume of the solid of revolution obtained by rotating A around...
(1) ...the x-axis
(3) ...the y-axis

- ...the line $y=-1$
(Just set up the integrals. No need to do the computation once you know you can do it.)

Volumes by "cylindrical shells" (like a volcano!)

You also saw a specific example of this in the videos. Now let's do it in general!

Problem. Let $a<b$ be real numbers.
Let f be a continuous, positive function defined on $[a, b]$.
Let A be the region in the first quadrant bounded between the graph of f and the x-axis.

Find a formula for the volume of the solid of revolution obtained by rotating the region A around the y-axis.

A volcano!

Consider the region A between the curve $y=2 x^{2}-x^{3}$ and the x-axis in the first quadrant:

- Rotate A around the y-axis, and compute the volume of the resulting solid. (You can use your formula from the last slide!)
- Rotate A around the line $x=-7$, and compute the volume of the resulting solid.
(Just set up the integrals.)

