MAT137 - Week 12 Lecture 1

- Reminder: The make up lecture is taking place on Thursday December 5 at 5:00-7:00 in MP203.
- Please fill out the feedback form by Friday December 13. Your responses are anonymous. The link is available in the announcement titled "Mid-year course feedback".
- Today's lecture will assume you have watched videos 6.4, 6.5, 6.7, 6.8, 6.10

For Tuesday's lecture, watch videos 6.11, 6.12.

Computations

Calculate:

(1) $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-6}{x^{2}+3 x-10}$
(2) $\lim _{x \rightarrow 0} \frac{e^{2 x^{2}}-\cos x}{x \sin x}$
(3) $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$
(9) $\lim _{x \rightarrow \infty} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$
(3) $\lim _{x \rightarrow \infty}(\sin x)\left(e^{1 / x}-1\right)$
(6) $\lim _{x \rightarrow \infty} x \sin \frac{2}{x}$
(0) $\lim _{x \rightarrow \infty} x \cos \frac{2}{x}$
(8) $\lim _{x \rightarrow 1}\left[(\ln x) \tan \frac{\pi x}{2}\right]$

Limits from graphs

Compute:

(1) $\lim _{x \rightarrow 0} \frac{H(x)}{H(2+3 x)-1}$

(2) $\lim _{x \rightarrow 2} \frac{F^{-1}(x)}{x-2}$

Careful with L'Hôpital's Rule

Compute:

$$
\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}
$$

What is wrong with this proof?

INCORRECT PROOF

This is indeterminate form of type $\frac{\infty}{\infty}$. So, by L'Hôpital's Rule,

$$
\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}=\lim _{x \rightarrow \infty} \frac{1+\cos x}{1}=\lim _{x \rightarrow \infty}(1+\cos x)
$$

The last limit doesn't exist and so $\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}$ doesn't exist.

True or False

Let f be a differentiable function on \mathbb{R}.
True or False: If $\lim _{x \rightarrow \infty} f(x)$ exists, then $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$.
To correct the theorem, we need another assumption.
Prove this theorem:

Theorem

Let f be a differentiable function on \mathbb{R}. IF

- $\lim _{x \rightarrow \infty} f(x)$ exists
- $\lim _{x \rightarrow \infty} f^{\prime}(x)$ exists

THEN

$$
\lim _{x \rightarrow \infty} f^{\prime}(x)=0
$$

Taylor polynomial preview

Let f be a function with domain \mathbb{R}.
Assume f is differentiable as many times needed.
(1) Find the only degree one polynomial P_{1} such that

$$
\lim _{x \rightarrow a} \frac{f(x)-P_{1}(x)}{x-a}=0
$$

(2) Find the only degree two polynomial P_{2} such that

$$
\lim _{x \rightarrow a} \frac{f(x)-P_{2}(x)}{(x-a)^{2}}=0
$$

(3) Let $n \in \mathbb{N}$. Find the only degree n polynomial P_{n} such that

$$
\lim _{x \rightarrow a} \frac{f(x)-P_{n}(x)}{(x-a)^{n}}=0
$$

What does this mean about f and P_{n} ?
Which P_{n} approximates f best near a ? (which of (1) or (2) is stronger?)

