MAT137

- Today we will discuss the intuitive definition of limit.
- Homework before Wednesday's class: watch videos 2.5, 2.6.
- Note: use the examples which we do not cover (there will be more of them later) as practice problems.

Intuitive definition of limit

Definition

Let f be a function defined on an interval containing $a \in \mathbb{R}$, except possibly at a. The limit of f is L means that if x is close to a, then $f(x)$ is close to L.

Some limits

For each of the following, find the limit if it exists.
(1) $\lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x-2}$
(2) $\lim _{x \rightarrow 0}|x|$
(3) $\lim _{x \rightarrow 0} \frac{|x|}{x}$
(4) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-2 x+1}$

Some limits

Define $f(x)$ by the following:

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}+2 x-3}{\sqrt{x}-1}, \text { if } x \neq 1 \\
5, \text { if } x=1
\end{array}\right.
$$

Find $\lim _{x \rightarrow 1} f(x)$.

Limits from a graph

Find the value of

1. $\lim _{x \rightarrow 2} f(x)$

Limits from a graph

Find the value of

1. $\lim _{x \rightarrow 2} f(x)$
2. $\lim _{x \rightarrow 2}[f(x)]^{2}$

Limits from a graph

Find the value of

1. $\lim _{x \rightarrow 2} f(x)$
2. $\lim _{x \rightarrow 2}[f(x)]^{2}$
3. $\lim _{x \rightarrow 0} f(f(x))$

Exponential limits

Compute:

$$
\lim _{t \rightarrow 0^{+}} e^{1 / t}, \quad \lim _{t \rightarrow 0^{-}} e^{1 / t}
$$

Suggestion: Sketch the graph of $y=e^{x}$ first.

