Alfonso has emailed the links for submitting problem set 1. If there is any problem, please contact him.

For those of you who need a tutorial change, see the instructions on the website.

Today we will discuss the intuitive definition of limit.

Homework before Wednesday’s class: watch videos 2.5, 2.6.
Intuitive definition of limit

Definition

Let f be a function defined on an interval containing $a \in \mathbb{R}$, except possibly at a. The limit of f is L means that if x is close to a, then $f(x)$ is close to L.
For each of the following, find the limit if it exists.

1. \(\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2} \)

2. \(\lim_{x \to 0} |x| \)

3. \(\lim_{x \to 0} \frac{|x|}{x} \)

4. \(\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 2x + 1} \)
Define $f(x)$ by the following:

$$f(x) = \begin{cases} \frac{x^2 + 2x - 3}{\sqrt{x} - 1}, & \text{if } x \neq 1 \\ 5, & \text{if } x = 1 \end{cases}$$

Find $\lim_{x \to 1} f(x)$.

Boris Khesin
MAT137
September 24, 2018
Find the value of

1. $\lim_{x \to 2} f(x)$
Limits from a graph

Find the value of

1. \(\lim_{x \to 2} f(x) \)

2. \(\lim_{x \to 2} [f(x)]^2 \)

\(y = f(x) \)
Find the value of

1. \(\lim_{x \to 2} f(x) \)

2. \(\lim_{x \to 2} [f(x)]^2 \)

3. \(\lim_{x \to 0} f(f(x)) \)
Exponential limits

Compute:

\[\lim_{t \to 0^+} e^{1/t}, \quad \lim_{t \to 0^-} e^{1/t}. \]

Suggestion: Sketch the graph of \(y = e^x \) first.