MAT137

- Enrol in a tutorial if you haven't already done so. Tutorials are starting this week. You will be able to switch tutorials even after registration closes.
- Today we will discuss definitions and proofs.
- Homework before Wednesday's class: watch videos 1.14, 1.15.

Warm-up: Symmetric difference

Given two sets A and B, we define

- $A \backslash B=\{x \in A: x \notin B\}$
- $A \triangle B=(A \backslash B) \cup(B \backslash A)$

Let

- $C_{1}=\{$ students in class wearing green today $\}$
- $C_{2}=\{$ students sitting in the first two rows $\}$ What is the set $C_{1} \triangle C_{2}$?

Even numbers

Which of the two definitions is correct?

Definition

$n \in \mathbb{Z}$ is even if $\exists a \in \mathbb{Z}$, s.t. $n=2 a$.
OR
Definition
$n \in \mathbb{Z}$ is even if $\forall a \in \mathbb{Z}, n=2 a$.

What is wrong with this proof?

Theorem

The sum of two odd numbers is even.

$$
\begin{aligned}
& \text { Proof. } \\
& \hline x=2 a+1 \text { odd } \\
& y=2 b+1 \text { odd } \\
& x+y=2 n \text { even } \\
& 2 a+1+2 b+1=2 n \\
& 2 a+2 b+2=2 n \\
& a+b+1=n
\end{aligned}
$$

Write a correct proof.

One-to-one

A function is called one-to-one if different inputs always produce different outputs.

Write a formal definition of "one-to-one".
After you have written your definition, exchange with your neighbour and discuss.

Examples

Which of the following functions are one-to-one?
(1) x^{2} on the interval $[-1,1]$.
(2) x^{3} on the interval $[-1,1]$.
(3) Define $f: \mathbb{Z} \rightarrow\{0,1\}$ by

$$
f(n)= \begin{cases}0, & \text { if } n \text { is even } \\ 1, & \text { if } n \text { is odd }\end{cases}
$$

Possible definitions

Let f be a function with domain D. What do the following mean?
(1) $f\left(x_{1}\right) \neq f\left(x_{2}\right)$
(2) $\exists x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
(3) $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
(4) $\forall x_{1}, x_{2} \in D, x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
(5) $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right) \Longrightarrow x_{1} \neq x_{2}$
(6) $\forall x_{1}, x_{2} \in D, x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$
(7) $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$

Increasing and one-to-one

Recall that a function f is called increasing on an interval $/$ when

$$
\forall x, y \in I, x<y \Rightarrow f(x)<f(y)
$$

Let's prove the following theorem

Theorem

If f is increasing on an interval I, then it is one-to-one on the interval I.

