• Today we will discuss limit laws.

• Homework before Wednesday's class: watch videos 2.12, 2.13.

Goal

We want to prove that

$$\lim_{x \to 0^+} \frac{1}{x} \text{ does not exist}$$

directly from the definition.

Goal

We want to prove that

$$\lim_{x \to 0^+} \frac{1}{x} \text{ does not exist}$$

directly from the definition.

1. Write down the formal definition of the statement (1).

Goal

We want to prove that

$$\lim_{x \to 0^+} \frac{1}{x} \text{ does not exist}$$

directly from the definition.

- 1. Write down the formal definition of the statement (1).
- 2. Write down what the structure of the formal proof should be, without filling the details.

Goal

We want to prove that

$$\lim_{x \to 0^+} \frac{1}{x} \text{ does not exist}$$

directly from the definition.

- 1. Write down the formal definition of the statement (1).
- 2. Write down what the structure of the formal proof should be, without filling the details.
- 3. Write down a complete formal proof.

Theorem

Let a, L_1, L_2 be real numbers. Let f be a function defined on an interval containing $a \in \mathbb{R}$, except possibly at a. Suppose that

$$\lim_{x \to a} f(x) = L_1 \quad and \quad \lim_{x \to a} f(x) = L_2$$

Then $L_1 = L_2$.

Theorem

Let a, L_1, L_2 be real numbers. Let f be a function defined on an interval containing $a \in \mathbb{R}$, except possibly at a. Suppose that

$$\lim_{x \to a} f(x) = L_1 \quad and \quad \lim_{x \to a} f(x) = L_2$$

Then $L_1 = L_2$.

By contradiction: assume that $L_1 \neq L_2$. Then take $\varepsilon = |L_1 - L_2|/3 > 0$. Then $\exists \delta > 0$ s.t. ... Can you find functions f(x) and g(x) with the following properties?

- 1 $\lim_{x\to 0} f(x)$ does not exists and $\lim_{x\to 0} (f(x) + g(x)) = 0$.
- 2 $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} f(x)g(x) = 14$.
- 3 lim_{x→0} f(x) does not exist and lim_{x→0} g(x) does not exist, but lim_{x→0} f(x)g(x) = 0.
- 4 $\lim_{x\to 0} f(x) = 2$ and $\lim_{x\to 0} g(x) = 3$, but $\lim_{x\to 0} g(f(x)) = 14$.

Let $a \in \mathbb{R}$. Let f and g be functions defined near a. Assume $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$. What can we conclude about $\lim_{x \to a} \frac{f(x)}{g(x)}$? 1. The limit is 1. 4. T

- 2. The limit is 0.
- 3. The limit is ∞ .

- 4. The limit does not exist.
- 5. We do not have enough information to decide.