MAT137

- Today we will discuss limit laws.
- Homework before Wednesday's class: watch videos 2.12, 2.13.

Proof of non-existence

Goal

We want to prove that

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x} \text { does not exist }
$$

directly from the definition.

Proof of non-existence

Goal

We want to prove that

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x} \text { does not exist }
$$

directly from the definition.

1. Write down the formal definition of the statement (1).

Proof of non-existence

Goal

We want to prove that

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{1}{x} \text { does not exist } \tag{1}
\end{equation*}
$$

directly from the definition.

1. Write down the formal definition of the statement (1).
2. Write down what the structure of the formal proof should be, without filling the details.

Proof of non-existence

Goal

We want to prove that

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{1}{x} \text { does not exist } \tag{1}
\end{equation*}
$$

directly from the definition.

1. Write down the formal definition of the statement (1).
2. Write down what the structure of the formal proof should be, without filling the details.
3. Write down a complete formal proof.

Uniqueness of limits

Theorem

Let a, L_{1}, L_{2} be real numbers. Let f be a function defined on an interval containing $a \in \mathbb{R}$, except possibly at a. Suppose that

$$
\lim _{x \rightarrow a} f(x)=L_{1} \text { and } \lim _{x \rightarrow a} f(x)=L_{2}
$$

Then $L_{1}=L_{2}$.

Uniqueness of limits

Theorem

Let a, L_{1}, L_{2} be real numbers. Let f be a function defined on an interval containing $a \in \mathbb{R}$, except possibly at a. Suppose that

$$
\lim _{x \rightarrow a} f(x)=L_{1} \text { and } \lim _{x \rightarrow a} f(x)=L_{2}
$$

Then $L_{1}=L_{2}$.

By contradiction: assume that $L_{1} \neq L_{2}$. Then take $\varepsilon=\left|L_{1}-L_{2}\right| / 3>0$. Then $\exists \delta>0$ s.t. ...

Some strange guys

Can you find functions $f(x)$ and $g(x)$ with the following properties?
(1) $\lim _{x \rightarrow 0} f(x)$ does not exists and $\lim _{x \rightarrow 0}(f(x)+g(x))=0$.
(2) $\lim _{x \rightarrow 0} f(x)=0$ and $\lim _{x \rightarrow 0} f(x) g(x)=14$.
(3) $\lim _{x \rightarrow 0} f(x)$ does not exist and $\lim _{x \rightarrow 0} g(x)$ does not exist, but $\lim _{x \rightarrow 0} f(x) g(x)=0$.
(4) $\lim _{x \rightarrow 0} f(x)=2$ and $\lim _{x \rightarrow 0} g(x)=3$, but $\lim _{x \rightarrow 0} g(f(x))=14$.

Indeterminate form

Let $a \in \mathbb{R}$.
Let f and g be functions defined near a.
Assume $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$.
What can we conclude about $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$?

1. The limit is 1 .
2. The limit is 0 .
3. The limit is ∞.
4. The limit does not exist.
5. We do not have enough information to decide.
