• Today we will discuss limit laws.

• Homework before Wednesday's class: watch videos 2.12, 2.13.

.

Proof of non-existence

Goal

We want to prove that

$$\lim_{x \to 0^+} \frac{1}{x} \text{ does not exist}$$

directly from the definition.

(1)

Proof of non-existence

Goal

We want to prove that

$$\lim_{x \to 0^+} \frac{1}{x} \text{ does not exist}$$

directly from the definition.

- 1. Write down the formal definition of the statement (1).
- 2. Write down what the structure of the formal proof should be, without filling the details.
- 3. Write down a complete formal proof.

(1)

VLER JERO s.t. VSRO PE. WTS 0< X< 8, but 1/x-L/7, E 3X s.t. Indeed, take any L>0 and E>0 (consider L=0 later) Rough work: need to find such an X that $\left|\frac{1}{x} - L\right| \ge \varepsilon$ N-LZE 1a17a x> L+E>0

PE WTS VLER JEZO NA VOZO JX NA $0 < X_0 < \delta$, but $\left| \frac{1}{X_0} - L \right| \ge \varepsilon$ Indeed, take any L>O (consider L <0 similarly yourself) 1161 to the LE and take E=1. Rough work: we need to find \rightarrow_X such an Xo that $|\frac{1}{X} - L| \ge 1$ we will solve a "more difficult" problem: find to such that $\frac{1}{x_0} - L \ge 1$ or, equivalently, $\frac{1}{x_0} \ge L + 1$. Note that $L + 1 \ge 0$

Since $\chi_0>0$, it suffices to take $0 < \chi_0 \leq \frac{1}{L+1}$ Also given any $\delta>0$ we need $0 < \chi_0 < \delta$ Clean proof: Take any L>0, any $\delta>0$ and $\epsilon=1$. Then take $\chi_0 \in \mathbb{R}$ such that $0 < x_o < \min(\delta, \frac{1}{L+1})$ Then for this x_0 we have $0 < x_0 < \delta$ and $\frac{1}{x_0} > L+1$, and hence $|\frac{1}{x_0} - L| \ge 1$ This means that I live I

Theorem

Let a, L_1, L_2 be real numbers. Let f be a function defined on an interval containing $a \in \mathbb{R}$, except possibly at a. Suppose that

$$\lim_{x \to a} f(x) = L_1 \quad and \quad \lim_{x \to a} f(x) = L_2$$

Then $L_1 = L_2$.

By contradiction: assume that $L_1 \neq L_2$. Then take $\varepsilon = |L_1 - L_2|/3 > 0$. Then $\exists \delta > 0$ s.t. ...

4=\$(x) E= 14-L2 lim f(x)=Li 5 VE>0 3813 0 s.t. 0<1×-a|<δi ⇒ |f(x)-Li|<= =1.2 $\delta = \min(\delta_1, \delta_2)$ Take

Then for all x stis

$$0 \le |x-a| < \delta \Rightarrow$$

 $|f(x) - L_1| < |L_1 - L_2|$
and $|f(x) - L_2| < |\underline{L_1 - L_2}|$. Then
 $|L_1 - L_2| = |L_1 - f(x) + f(x) - L_2| \le$
 $\le |L_1 - f(x)| + |f(x) - L_2| \le$
 $1 \le |L_1 - L_2| + |L_1 - L_2| \le \frac{2}{3} |L_1 - L_2|$
We obtained that for those x's
 $|L_1 - L_2| < \frac{2}{3} (L_1 - L_2| + ullich is a)$
contradiction. Hence $L_1 = L_2$

Recall the limit laws : Assume that $\exists \lim_{x \to a} f(x) = L$, $\exists \lim_{x \to a} g(x) = M$ Then) I lim \$+91(x)=L+M 2) $\exists \lim_{x \to a} f \cdot g(x) = L \cdot M$ 3) If M = 0 then I lim for L x=a gos M

Can you find functions f(x) and g(x) with the following properties?

- 1 $\lim_{x\to 0} f(x)$ does not exists and $\lim_{x\to 0} (f(x) + g(x)) = 0$.
- 2 $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} f(x)g(x) = 14$.
- 3 $\lim_{x\to 0} f(x)$ does not exist and $\lim_{x\to 0} g(x)$ does not exist, but $\lim_{x\to 0} f(x)g(x) = 0$.
- 4 $\lim_{x\to 0} f(x) = 2$ and $\lim_{x\to 0} g(x) = 3$, but $\lim_{x\to 0} g(f(x)) = 14$.

)
$$f(x) = \frac{1}{X}$$
, $g(x) = -\frac{1}{X} + X$
Then $\lim_{x \to 0} f(x) DNE$, but $\lim_{x \to 0} (f+g) = \lim_{x \to 0} X = O$

2)
$$f(x) = x \qquad g(x) = \frac{14}{x}$$

$$\lim_{X \to 0} f(x) = 0 \qquad \lim_{X \to 0} g(x) \quad \text{DNE}$$

$$\frac{1}{x \to 0} \qquad \text{Note:} \lim_{X \to 0} f(x) \quad \text{DNE}$$

$$\frac{1}{x \to 0} \qquad \text{Note:} \lim_{X \to 0} f(x) \quad \text{DNE}$$

$$\frac{1}{x \to 0} \qquad \text{Note:} \lim_{X \to 0} g(x) \quad \text{DNE}$$

$$\frac{1}{x \to 0} \qquad \text{Rim} g(x) \quad \text{DNE}$$

$$\frac{1}{x \to 0} \qquad \text{Rim} g(x) \quad \text{DNE}$$

$$\frac{1}{x \to 0} \qquad \text{Rim} g(x) = 0$$

$$\frac{1}{x \to 0} \qquad \text{Rim} g(x) = 0$$

$$\frac{1}{x \to 0} \qquad \text{Rim} g(x) = 0$$

$$\frac{1}{x \to 0} \qquad \text{Rim} g(x) = 14$$

$$\frac{1}{x \to 0} \qquad \frac{1}{x \to 2} \qquad \text{Rim} g(x) = 14$$

$$\frac{1}{x \to 0} \qquad \frac{1}{x \to 2} \qquad \text{Rim} g(x) = 14$$

$$\frac{1}{x \to 0} \qquad \frac{1}{x \to 2} \qquad \frac{1}{x \to 2$$

Question: Can it be that lim \$(x) DNE, but I lim g(x) and I lim (f(x)+g(x))?

Indeterminate form

Let a=0 in all examples and consider lim Let $a \in \mathbb{R}$. X-> O Let f and g be functions defined near a. Assume $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0.$ $\lim_{x\to a}\frac{f(x)}{g(x)}?$ What can we conclude about 1. The limit is 1. 4. The limit does not exist. The limit is 0. We do not have enough 3. The limit is ∞ . information to decide. IXI X2 4') XSih