Today we will discuss limit laws.

Homework before Wednesday’s class: watch videos 2.12, 2.13.
Goal

We want to prove that

$$\lim_{x \to 0^+} \frac{1}{x} \text{ does not exist}$$  \hspace{2cm} (1)$$

directly from the definition.
Goal

We want to prove that

\[ \lim_{x \to 0^+} \frac{1}{x} \text{ does not exist} \quad (1) \]

directly from the definition.

1. Write down the formal definition of the statement (1).
2. Write down what the structure of the formal proof should be, without filling the details.
3. Write down a complete formal proof.
Proof. WTS: \( \forall \epsilon > 0 \ \exists \delta > 0 \)

\[ \forall x_0 \text{ s.t. } 0 < x_0 < \delta, \text{ but } \left| \frac{1}{x_0} - L \right| > \epsilon \]

Indeed, take any \( L > 0 \) and \( \epsilon > 0 \) (consider \( L \leq 0 \) later).

Rough work: need to find such an \( x_0 \) that

\[ \left| \frac{1}{x_0} - L \right| \geq \epsilon \]

\[ \frac{1}{x_0} - L \geq \epsilon \]

\[ \frac{1}{x_0} \geq L + \epsilon > 0 \]
\textbf{Pf. WTS} \forall L \in \mathbb{R} \exists \varepsilon > 0 \text{ s.t. } \forall \delta > 0 \exists x_0 \text{ s.t. } 0 < x_0 < \delta, \text{ but } \left| \frac{1}{x_0} - L \right| \geq \varepsilon

\begin{itemize}
    \item Indeed, take any \( L > 0 \) (consider \( L \leq 0 \) similarly yourself) and take \( \varepsilon = 1 \).
    \item Rough work: we need to find such an \( x_0 \) that \( \left| \frac{1}{x_0} - L \right| \geq 1 \).
    \item We will solve a "more difficult" problem: find \( x_0 \) such that \( \frac{1}{x_0} - L \geq 1 \).
    \item or, equivalently, \( \frac{1}{x_0} \geq L + 1 \). Note that \( L + 1 > 0 \).
\end{itemize}
Since $x_0 > 0$, it suffices to take $0 < x_0 \leq \frac{1}{L+1}$.

Also given any $\delta > 0$ we need $0 < x_0 < \delta$.

Clean proof: Take any $L > 0$, any $\delta > 0$ and $\varepsilon = 1$. Then take $x_0 \in \mathbb{R}$ such that

$$0 < x_0 < \min(\delta, \frac{1}{L+1})$$

Then for this $x_0$ we have $0 < x_0 < \delta$ and $\frac{1}{x_0} > L+1$, and hence $|\frac{1}{x_0} - L| \geq 1$.

This means that $\exists \lim_{x \to 0^+} \frac{1}{x}$.
Uniqueness of limits

Theorem

Let \( a, L_1, L_2 \) be real numbers. Let \( f \) be a function defined on an interval containing \( a \in \mathbb{R} \), except possibly at \( a \). Suppose that

\[
\lim_{x \to a} f(x) = L_1 \quad \text{and} \quad \lim_{x \to a} f(x) = L_2
\]

Then \( L_1 = L_2 \).

By contradiction: assume that \( L_1 \neq L_2 \). Then take \( \varepsilon = \frac{|L_1 - L_2|}{3} > 0 \). Then \( \exists \delta > 0 \) s.t. ...
\[
\lim_{x \to a} f(x) = L_i \leq \forall \varepsilon > 0 \exists \delta_i > 0 \text{ s.t. } 0 < |x - a| < \delta_i \implies |f(x) - L_i| < \varepsilon = \frac{|L_1 - L_2|}{3} \]

Take \( \delta = \min (\delta_1, \delta_2) \)
Then for all $x \in \mathbb{R}$,

$$0 < |x - a| < \delta \implies \left| f(x) - L_1 \right| < \frac{|L_1 - L_2|}{3}$$

and $\left| f(x) - L_2 \right| < \frac{|L_1 - L_2|}{3}$, then

$$|L_1 - L_2| = |L_1 - f(x) + f(x) - L_2| \leq$$

$$\leq |L_1 - f(x)| + |f(x) - L_2| \leq$$

$$\leq \frac{1}{3} \left| L_1 - L_2 \right| + \frac{1}{3} \left| L_1 - L_2 \right| = \frac{2}{3} \left| L_1 - L_2 \right|$$

We obtained that for those $x$'s

$$|L_1 - L_2| < \frac{2}{3} \left| L_1 - L_2 \right|$$

which is a contradiction. Hence $L_1 = L_2$. 

\[\]
Recall the limit laws:

Assume that

\[
\lim_{x \to a} f(x) = L, \quad \lim_{x \to a} g(x) = M
\]

Then:

1) \( \lim_{x \to a} (f + g)(x) = L + M \)
2) \( \lim_{x \to a} f \cdot g(x) = L \cdot M \)
3) If \( M \neq 0 \) then \( \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \)
Can you find functions $f(x)$ and $g(x)$ with the following properties?

1. $\lim_{x \to 0} f(x)$ does not exist and $\lim_{x \to 0} (f(x) + g(x)) = 0$.
2. $\lim_{x \to 0} f(x) = 0$ and $\lim_{x \to 0} f(x)g(x) = 14$.
3. $\lim_{x \to 0} f(x)$ does not exist and $\lim_{x \to 0} g(x)$ does not exist, but $\lim_{x \to 0} f(x)g(x) = 0$.
4. $\lim_{x \to 0} f(x) = 2$ and $\lim_{x \to 0} g(x) = 3$, but $\lim_{x \to 0} g(f(x)) = 14$.

:) $f(x) = \frac{1}{x}$, $g(x) = -\frac{1}{x} + x$

Then $\lim_{x \to 0} f(x)$ DNE, but $\lim_{x \to 0} (f \circ g) = \lim_{x \to 0} x = 0$
2) \( f(x) = x \)
\[ \lim_{x \to 0} f(x) = 0 \]
\[ \lim_{x \to 0} g(x) = \frac{14}{x} \]
\[ \lim_{x \to 0} g(x) \text{ DNE} \]

3) \( f(x) \to 1 \)
\[ \lim_{x \to 0} f(x) = 0 \]
\( g(x) \)
\[ \lim_{x \to 0} g(x) \text{ DNE} \]
\[ \lim_{x \to 0} f(x) \cdot g(x) = \lim_{x \to 0} 0 = 0 \]

4) \( f(x) = 2 \), \( \lim_{x \to 0} f(x) = 2 \)
\[ g(x) = 3 + \frac{11}{2} x \]
\[ \lim_{x \to 0} g(x) = 3, \quad \lim_{x \to 2} g(x) = 14 \]
\[ \lim_{x \to 0} g(f(x)) = \lim_{x \to 2} g(2) = 14 \]
Question: Can it be that \( \lim_{x \to a} f(x) \) DNE, but \( \exists \lim_{x \to a} g(x) \) and \( \exists \lim_{x \to a} (f(x) + g(x)) \)?
Let \( a = 0 \) in all examples and consider \( \lim_{x \to 0} \).

Let \( a \in \mathbb{R} \).

Let \( f \) and \( g \) be functions defined near \( a \).

Assume \( \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \).

What can we conclude about \( \lim_{x \to a} \frac{f(x)}{g(x)} \)?

1. The limit is 1.
2. The limit is 0.
3. The limit is \( \infty \).
4. The limit does not exist.
5. We do not have enough information to decide.

\[
\begin{align*}
1) \quad & \frac{f}{g} = \frac{x}{x} \\
2) \quad & \frac{x^2}{x} \\
3) \quad & \frac{1 \cdot x}{x^2} \\
4) \quad & \frac{1 \cdot x}{x} \\
4') \quad & \frac{x \sin \frac{1}{x}}{x}
\end{align*}
\]