## MAT137

- Today: The chain rule.
- Homework before Wednesday's class: watch videos 3.12, 3.13.


## Computations

Compute the derivative of

$$
\begin{aligned}
& \text { 1. } f(x)=\sqrt{2 x^{2}+x+1} \\
& \text { 2. } f(x)=\sqrt{x+\sqrt{x+\sqrt{x+1}}}
\end{aligned}
$$

## Balloon

I am inflating a spherical balloon. Below is the graph of the radius $r$ (in cm ) as a function of time $t$ (in $s$ ). At what rate is the volume of the balloon increasing at time 4s?


## Balloon

I am inflating a spherical balloon. Below is the graph of the radius $r$ (in cm ) as a function of time $t$ (in $s$ ). At what rate is the volume of the balloon increasing at time 4s?


## A different proof for the quotient rule

Assume we have already proven the product rule, the power rule, and the chain rule.
Obtain a formula for the derivative of $h(x)=\frac{f(x)}{g(x)}$.
Hint: $\frac{f(x)}{g(x)}=f(x) \cdot g(x)^{-1}$

## A pesky function

Let $h(x)=x^{2} \sin \frac{1}{x}$.

1. Calculate $h^{\prime}(x)$ for any $x \neq 0$.
2. Using the definition of derivative, calculate $h^{\prime}(0)$.
3. Is $h$ continuous at 0 ?
4. Is $h$ differentiable at 0 ?
5. Is $h^{\prime}$ continuous at 0 ?

Hint: The last two questions have different answers.

## Derivatives of $(f \circ g)$

Assume $f$ and $g$ are functions that have all their derivatives.
Find formulas for

1. $(f \circ g)^{\prime}(x)$
2. $(f \circ g)^{\prime \prime}(x)$
3. $(f \circ g)^{\prime \prime \prime}(x)$
in terms of the values of $f, g$ and their derivatives.

Hint: The first one is simply the chain rule.

