Today: Proof of the differentiation rules.

Homework before Tuesday’s class: watch videos 3.10, 3.11.
Let $a \in \mathbb{R}$.
Let f be a function with domain \mathbb{R}.
Assume f is differentiable everywhere.
What can we conclude?

1. $f(a)$ is defined.
2. $\lim_{x \to a} f(x)$ exists.
3. f is continuous at a.
4. $f'(a)$ exists.
5. $\lim_{x \to a} f'(x)$ exists.
6. f' is continuous at a.
A continuity lemma

Write a formal proof for:

Lemma

Let \(a \in \mathbb{R} \).

Let \(g \) be a function continuous at \(a \).

Assume that \(g(a) \neq 0 \). Then \(g(x) \neq 0 \) for \(x \) close to \(a \).

Note: First, figure out what “\(g(x) \neq 0 \) for \(x \) close to \(a \)” means formally.
Write a formal proof for the quotient rule for derivatives

Theorem

- Let $a \in \mathbb{R}$.
- Let f and g be functions defined at and near a. Assume $g(a) \neq 0$.
- We define the function h by $h(x) = \frac{f(x)}{g(x)}$.

If f and g are differentiable at a,

Then h is differentiable at a, and

$$h'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}.$$

Write a proof directly from the definition of derivative.

Hint: Imitate the proof of the product rule in Video 3.6.
Check your proof

- Are there words or only equations?
- Does every step follow logically?
- Did you only assume things you could assume?

- At some point in your proof you must have used, for example, that g was continuous. (Otherwise your proof is most likely wrong.) Did you notice you were using this? Did you justify it?
Critique this proof

\[h'(a) = \lim_{x \to a} \frac{h(x) - h(a)}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} \]

\[= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(x)}{g(x)g(a)(x - a)} \]

\[= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a) + f(a)g(a) - f(a)g(x)}{g(x)g(a)(x - a)} \]

\[= \lim_{x \to a} \left\{ \left[\frac{f(x) - f(a)}{x - a} g(a) - f(a) \frac{g(x) - g(a)}{x - a} \right] \frac{1}{g(x)g(a)} \right\} \]

\[= [f'(a)g(a) - f(a)g'(a)] \frac{1}{g(a)g(a)} \]
Reminder: What is the equation for this function?

\[f(x) = \ldots \]
Construct a function that has both
- a vertical tangent line at $x = 1$, and
- a vertical asymptote at $x = -1$.
From the derivative to the function

1. Sketch the graph of a continuous function whose derivative has the graph below

2. Sketch the graph of a non-continuous function whose derivative has the graph below