MAT137

- Today: Definition of derivative.
- Homework before Wednesday class: watch videos 3.4, 3.5, 3.8.

From last time: More uses of IVT

1. Prove that the equation $x^{3}+\sin x-1=0$ has a solution.
2. Prove that the equation $x^{4}-2 x=100$ has at least two solutions.
3. Suppose that $f(x)$ is a continuous function on $[0,1]$ such that $f(x) \in[0,1]$. Prove that the equation $f(x)=x$ has a solution.

Tangent line from a graph

Below is the graph of the function f. Write the equation of the line tangent to it at the point with x-coordinate -2 .

Absolute value and tangent lines

At $(0,0)$ the graph of $y=|x| \ldots$

1. ... has one tangent line: $y=0$
2. ... has one tangent line: $x=0$
3. ... has two tangent lines $y=x$ and $y=-x$ 4. ... has no tangent line

The definition

Let $f(x)$ be a function defined on some interval containing a. We say that $f(x)$ is differentiable at a when

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists. Notation for the limit: $f^{\prime}(a)$.
Meaning of derivative $f^{\prime}(a)$:

- the slope of the tangent to the graph $y=f(x)$ at $x=a$.
- the instantaneous rate of change of $f(x)$ at $x=a$.

Absolute value and derivatives

Let $g(x)=x|x|$. What is $g^{\prime}(0)$?

1. It is 0 .
2. It does not exist because $|x|$ is not differentiable at 0 .
3. It does not exist because the right- and left-limits, when computing the derivative, are different.
4. It does not exist because it has a corner.

Derivatives from the definition

Let

$$
g(x)=\frac{2}{\sqrt{x}}
$$

Calculate $g^{\prime}(4)$ directly from the definition of derivative as a limit.

Derivative from a graph

Below is the graph of the function f. Sketch the graph of its derivative f^{\prime}.

