MAT137

- Today: Definition of derivative.
- Homework before Wednesday class: watch videos 3.4, 3.5, 3.8.

From last time: More uses of IVT

1. Prove that the equation $x^{3}+\sin x-1=0$ has a solution.
2. Prove that the equation $x^{4}-2 x=100$ has at least two solutions.
3. Suppose that $f(x)$ is a continuous function on $[0,1]$ such that $f(x) \in[0,1]$. Prove that the equation $f(x)=x$ has a solution.

Sol: If $f(0)=0$ or $f(1)=1$, then they are sol's of the eq' $n f(x)=x$

$$
\left(\begin{array}{lll}
x=0 & \text { or } & \text { usp. }
\end{array}\right)
$$

Otherwise we know that $f(0)>0$ and

$$
f(1)<1
$$

Consider the $f_{n}^{\prime} \quad g(x)=f(x)-x$
Then $g(x)$ is contin (since $f(x)$ and x are)

$$
\begin{aligned}
g(0)=f(0)-0>0 \\
g(1)=f(1)-1<0
\end{aligned} \Rightarrow \text { by the IVT }[0,1] \quad \exists c \in(0,1)
$$

Tangent line from a graph

Below is the graph of the function f. Write the equation of the line tangent to it at the point with x-coordinate -2 .

$$
\begin{gathered}
m=\text { sbope } \\
y-b=m(x-a) \\
a=-2 \\
b=-1, m=-2 \\
y-(-1)=-2(x-(-2)) \\
y+1=-2 x-4 \\
y=-2 x-5
\end{gathered}
$$

Absolute value and tangent lines

At $(0,0)$ the graph of $y=|x| \ldots$

1. ... has one tangent line: $y=0$
2. ... has one tangent line: $x=0$
3. ... has two tangent lines $y=x$ and $y=-x$ 4. ... has no tangent line

The definition

$$
x=a+h
$$

Let $f(x)$ be a function defined on some interval containing a. We say that $f(x)$ is differentiable at a when

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Meaning of derivative $f^{\prime}(a)$:

- the slope of the tangent to the graph $y=f(x)$ at $x=a$.
- the instantaneous rate of change of $f(x)$ at $x=a$.

Absolute value and derivatives

Let $g(x)=x|x|$. What is $g^{\prime}(0)$?

1. It is 0 .
2. It does not exist because $|x|$ is not differentiable at 0 .
3. It does not exist because the right- and left-limits, when computing the derivative, are different.
4. It does not exist because it has a corner.

$$
\left.\begin{array}{l}
|x|= \begin{cases}x, & x \geq 0 \\
-x, & x<0\end{cases} \\
g(x)=x|x|= \begin{cases}x^{2}, & x \geq 0 \\
-x^{2}, & x<0\end{cases} \\
\lim _{x \rightarrow 0^{+}} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}-0}{x} \\
=\lim _{x \rightarrow 0^{+}} x=0
\end{array}\right\} \begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{-x^{2}-0}{x}=\lim _{x \rightarrow 0^{-}}(-x)=0 \\
& \Rightarrow J \lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=0=g^{\prime}(0)
\end{aligned}
$$

Derivatives from the definition

Let

$$
g(x)=\frac{2}{\sqrt{x}}
$$

Calculate $g^{\prime}(4)$ directly from the definition of derivative as a limit.

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{g(x)-g(4)}{x-4}=\lim _{x \rightarrow 4} \frac{\frac{2}{\sqrt{x}}-\frac{2}{\sqrt{4}}=1}{x-4}=\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{\sqrt{x}(x-4)} \\
& =\lim _{x \rightarrow 4} \frac{(2-\sqrt{x})(2+\sqrt{x})}{\sqrt{x}(x-4)(2+\sqrt{x})}=\lim _{x \rightarrow 4} \frac{4-x=-1}{\sqrt{x}(x-4)(2+\sqrt{x})} \\
& x>0
\end{aligned}=-\frac{1}{2(2+2)}=\begin{aligned}
& \lim _{x \rightarrow 4} \frac{-1}{\sqrt{x}(2+\sqrt{x})}=-\frac{1}{\sqrt{4}(2+\sqrt{4})}=-\frac{1}{8}
\end{aligned}
$$

Note: $\frac{2}{\sqrt{x}}-1=\frac{2-\sqrt{x}}{\sqrt{x}}$

Derivative from a graph

Below is the graph of the function f. Sketch the graph of its derivative f^{\prime}.

