MAT137

- Today: the remarkable limit and continuity of composition.
- Homework before Wednesday's class: watch videos 2.19, 2.20.

Elementary continuous functions

A difficult example

Is it possible to construct functions such that....?

1. $\lim _{x \rightarrow 1} f(x)=2$
2. $\lim _{u \rightarrow 2} g(u)=3$
3. $\lim _{x \rightarrow 1} g(f(x))=42$

True or False?

(Assuming these limits exist)

$$
\lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)
$$

True or False?

(Assuming these limits exist)

$$
\lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)
$$

What extra condition do we need to add for this to be true?

A composition theorem

Theorem

Let $a, L \in \mathbb{R}$.
Let f and g be functions.
IF

- $\lim _{x \rightarrow a} f(x)=L$
- g is continuous at L

THEN $\lim _{x \rightarrow a} g(f(x))=g(L)$

A composition theorem

Theorem

Let $a, L \in \mathbb{R}$.
Let f and g be functions.
IF

- $\lim _{x \rightarrow a} f(x)=L$
- g is continuous at L

THEN $\lim _{x \rightarrow a} g(f(x))=g(L)$

How can we prove this?

$$
|g(f(x))-g(L)|<\varepsilon
$$

A new function

Let $x, y \in \mathbb{R}$. What does the following expression calculate? Prove it.

$$
f(x, y)=\frac{x+y+|x-y|}{2}
$$

Suggestion: If you don't know how to start, try some sample values of x and y.

Write a similar expression to compute $\min \{x, y\}$.

More continuous functions

We want to prove the following theorem

Theorem

IF f and g are continuous functions
THEN $h(x)=\max \{f(x), g(x)\}$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: There is a way to prove this quickly without writing any epsilons.

Computations!

Using that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, compute the following limits:

1. $\lim _{x \rightarrow 2} \frac{\sin x}{x}$
2. $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$
3. $\lim _{x \rightarrow 0} \frac{\tan ^{2}\left(2 x^{2}\right)}{x^{4}}$
4. $\lim _{x \rightarrow 0} \frac{\sin e^{x}}{e^{x}}$
5. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
6. $\lim _{x \rightarrow 0} \frac{\tan ^{10}\left(2 x^{20}\right)}{\sin ^{200}(3 x)}$

Computations!

Using that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, compute the following limits:

1. $\lim _{x \rightarrow 2} \frac{\sin x}{x}$
2. $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$
3. $\lim _{x \rightarrow 0} \frac{\tan ^{2}\left(2 x^{2}\right)}{x^{4}}$
4. $\lim _{x \rightarrow 0}[(\sin x)(\cos (2 x))(\tan (3 x))(\sec (4 x))(\csc (5 x))(\cot (6 x))]$

An extended version

