MAT137

- Today: the remarkable limit and continuity of composition.
- Homework before Wednesday's class: watch videos 2.19, 2.20.

Elementary continuous functions

A difficult example

$$
\begin{aligned}
\text { Take } f(x)=2 \\
\forall x \in \mathbb{R}
\end{aligned}
$$

Is it possible to construct functions such that....? $g(u)=\left\{\begin{array}{l}3, u \neq 2 \\ 42, u=2\end{array}\right.$
2. $\lim _{u \rightarrow 2} g(u)=3$
3. $\lim _{x \rightarrow 1} g(f(x))=42$

$$
\begin{aligned}
& g(f(x))=g(2)=42 \\
& \forall x \in \mathbb{R}
\end{aligned}
$$

True or False?

(Assuming these limits exist)

$$
\lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)
$$

What extra condition do we need to add for this to be true?

A composition theorem

Theorem

Let $a, L \in \mathbb{R}$.
Let f and g be functions.
IF

- $\lim _{x \rightarrow a} f(x)=L$
- g is continuous at L

THEN $\lim _{x \rightarrow a} g(f(x))=g(L)$
How can we prove this? WTS $\forall \varepsilon>0-\frac{-}{-} \delta>0$ sit.

$$
|g(f(x))-g(L)|<\varepsilon \quad 0<|x-a|<\delta \Rightarrow|g(f(x))-g(L)|<\varepsilon
$$

g is cousin at L, ire.

$$
\forall \varepsilon>0 \quad \exists \xi>0 \text { sit }
$$

$$
|u-L|<\xi \Rightarrow
$$

$$
\lg (u)-g(c))<\varepsilon
$$

Use this ξ as a "new $\varepsilon^{\prime \prime}$ for function f.
$g(f(x)) \quad f$ has a him at $x=a$, i.e for this $\xi>0 \quad \exists \delta>0$ sit.

$$
0<|x-a|<\delta \Rightarrow|f(x)-L|<\xi
$$

Thus for $\forall \varepsilon>0 \quad \exists \delta>0$ sot.

$$
\begin{aligned}
& 0<|x-a|<\delta \Rightarrow|f(x)-L|<\} \\
& \Rightarrow|g(u)-g(L)|=|g(f(x))-g(L)|<\varepsilon
\end{aligned}
$$

A new function

Let $x, y \in \mathbb{R}$. What does the following expression calculate? Prove it.

$$
f(x, y)=\frac{x+y+|x-y|}{2}
$$

Suggestion: If you don't know how to start, try some sample values of x and y.

Write a similar expression to compute $\min \{x, y\}$.

$$
\begin{aligned}
& x=3, y=5 \quad f(x, y)=\frac{3+5+|3-5|}{2}=\frac{8+2}{2}=5 \\
& x=7, y=-1, f(x, y)=\frac{7-1+|7-(-1)|}{2}=\frac{6+8}{2}=7 \\
& \xrightarrow[\underbrace{\frac{x+y}{2}}_{|x-y|}]{\underbrace{\max \{x, y\}}_{y}}
\end{aligned}
$$

More continuous functions

We want to prove the following theorem

Theorem

IF f and g are continuous functions
THEN $h(x)=\max \{f(x), g(x)\}$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: There is a way to prove this quickly without writing any epsilons.

$F(x)=\mid x($ is contin on \mathbb{R}

$$
h(x)=\frac{f(x)+g(x)+F(f(x)-g(x))}{2} \quad \begin{aligned}
& \text { sums, differen. } \\
& \text { compos, of } \\
& \text { contin } f \text { 's }
\end{aligned}
$$

$\Rightarrow \quad h$ is contin.

Computations!

Using that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, compute the following limits:

$$
u=e^{x}
$$

$\begin{array}{ll}\text { 1. } \lim _{x \rightarrow 2} \frac{\sin x}{x}=\frac{\sin 2}{2} & \text { 4. } \lim _{x \rightarrow 0} \frac{\sin e^{x}}{e^{x}}=\lim _{u \rightarrow 1} \frac{\sin u}{u}=\frac{\sin 1}{1} \\ \text { 2. } \lim _{x \rightarrow 0} \frac{\sin (5 x)}{x} & \text { 5. } \lim _{x \rightarrow 0} \frac{1-\cos x}{x} \\ \text { 3. } \lim _{x \rightarrow 0} \frac{\tan ^{2}\left(2 x^{2}\right)}{x^{4}} & \text { 6. } \lim _{x \rightarrow 0} \frac{\tan ^{10}\left(2 x^{20}\right)}{\sin ^{200}(3 x)}\end{array}$
The remarkable limit
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
2.

$$
\begin{array}{r}
\cdot \lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}=\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x} \cdot 5\left(=\lim _{u \rightarrow 0} \frac{\sin u}{u} \cdot 5\right) \\
5 x=u \quad=1 \cdot 5=5
\end{array}
$$

$$
\begin{aligned}
& \text { 3. } \lim _{x \rightarrow 0} \frac{\tan ^{2}\left(2 x^{2}\right)}{x^{4}}=\lim _{x \rightarrow 0} \frac{\sin ^{2}\left(2 x^{2}\right)}{\left(\cos ^{2}\left(2 x^{2}\right)\right.} \cdot \frac{1}{x^{4}} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2}\left(2 x^{2}\right)}{\left(2 x^{2}\right)^{2}} \cdot \frac{\left(2 x^{2}\right)^{2}}{\cos ^{2}\left(2 x^{2}\right) \cdot x^{4}} \\
& =\lim _{x \rightarrow 0} \frac{\sin \left(2 x^{2}\right)^{2}}{\left.2 x^{2}\right)_{12}^{2}} \cdot \frac{\left(2^{2}\right) x^{4}}{\cos ^{2}\left(2 x^{2}\right) x^{4}}=2^{2}=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. } \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\lim _{x \rightarrow 0} \frac{(1-\cos x)(1+\cos x)}{x(1+\cos x)}=1-\cos ^{2} x \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x(1+\cos x)}=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \cdot \frac{x}{1+\cos x}=0 \\
& \text { 6. } \lim _{x \rightarrow 0} \frac{\tan ^{10}\left(2 x^{20}\right)}{\sin ^{200}(3 x)}=\lim _{0}\left(\frac{\sin \left(2 x^{20}\right)}{2 x^{20}}\right)^{10} . \\
& =\frac{1}{\cos ^{10}\left(2 x^{200}\right.} \cdot \frac{1}{\sin (3 x)} \cdot \frac{\left(2 x^{20}\right)^{10}}{(3 x)^{200}}=\frac{2^{10}}{3^{200}}
\end{aligned}
$$

Computations!

Using that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, compute the following limits:

1. $\lim _{x \rightarrow 2} \frac{\sin x}{x}$
2. $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$
3. $\lim _{x \rightarrow 0} \frac{\tan ^{2}\left(2 x^{2}\right)}{x^{4}}$
4. $\lim _{x \rightarrow 0}[(\sin x)(\cos (2 x))(\tan (3 x))(\sec (4 x))(\csc (5 x))(\cot (6 x))]$

An extended version

