• Today: the remarkable limit and continuity of composition.

• Homework before Wednesday's class: watch videos 2.19, 2.20.

Elementary continuous functions

Take f(x)=2 VXER $g(u) = \int_{-\infty}^{3} u \neq 2$ (42, u= 2 Is it possible to construct functions such that? 1. $\lim_{x\to 1} f(x) = 2$ 42' 2. $\lim_{u \to 2} g(u) = 3$ g(u) 3. $\lim_{x \to 1} g(f(x)) = 42$ g(f(x)) = g(2) = 42 $\forall \times \in \mathbb{R}$

(Assuming these limits exist)
$$\lim_{x \to a} g(f(x)) = g\left(\lim_{x \to a} f(x)\right)$$

What extra condition do we need to add for this to be true?

A composition theorem

Theorem

Let $a, L \in \mathbb{R}$. Let f and g be functions. IF

- $\lim_{x \to a} f(x) = L$
- g is continuous at L

```
THEN \lim_{x\to a} g(f(x)) = g(L)
```

How can we prove this? WTS $\mathcal{J} \mathcal{E}^{>0} = \mathcal{J} \mathcal{J} \mathcal{F}^{>0} \mathcal{A}_{1}^{+}$. $|g(f(x)) - g(L)| < \varepsilon$ $O < |x - A| < \delta \Rightarrow |g(\mathcal{J}(x)) - g(L)| < \varepsilon$

g is contin at L, i.e. 1 2 1 2 1 4:0 0< 5E 0<3A 14-L < 3 ⇒ $|g(u) - g(U)| < \varepsilon$ Use this 3 as a "new E" y for function f. g(f(x)) I has a lim at X=q, i.e for this 3>2 35>0 s.t. $\Rightarrow |f(x) - L| < 3$ 0 < |x-a| < 8

Thus for $\forall \epsilon > 0 = \delta = 0$ s.t. $0 < |x - \alpha| < \delta = 0$ (f(x) - L) < 3 $(x - \alpha) < \delta = 0$ (f(x) - L) < 3 $(x - \alpha) < \delta = 0$ $(f(x)) - g(L) < \epsilon$

Let $x, y \in \mathbb{R}$. What does the following expression calculate? Prove it.

$$f(x,y) = \frac{x+y+|x-y|}{2}$$

Suggestion: If you don't know how to start, try some sample values of x and y.

Write a similar expression to compute $\min\{x, y\}$.

x=3, y=5 $f(x,y)=\frac{3+5+(3-5)}{2}=\frac{8+2}{5}=5$ x=7, y=-1, $f(x,y)=\frac{7-1+(7-(-y))}{2}=\frac{6+8}{2}=7$

We want to prove the following theorem

Theorem

IF f and g are continuous functions THEN $h(x) = \max{f(x), g(x)}$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: There is a way to prove this quickly without writing any epsilons.

 $y = \max \{f(x), g(x)\}$ Pf y = g(x) $h(x) = \max \{f(x), g(x)\}$ $= \frac{1}{2} (x) + \frac{1}{2} (x) + \frac{1}{2} (x) - \frac{1}{2} (x) + \frac{1}{2} (x)$ y = f(x)F(x)=1x(is contin on R $h(x) = \frac{f(x) + g(x) + F(f(x) - g(x))}{f(x) + F(f(x) - g(x))}$ runs, differen. compos, of contrin f's >> h is contin.

Computations!

Using that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, compute the following limits: $u = e^{x}$ 4. $\lim_{x \to 0} \frac{\sin e^{x}}{e^{x}} \approx \lim_{u \to 1} \frac{\sin u}{u} \approx \frac{\sin u}{u}$ 5. $\lim_{x \to 0} \frac{1 - \cos x}{x}$ 1. $\lim_{x \to 2} \frac{\sin x}{x} = \frac{\sin 2}{2}$ $2. \lim_{x \to 0} \frac{\sin(5x)}{x}$ 6. $\lim_{x \to 0} \frac{\tan^{10}(2x^{20})}{\sin^{200}(3x)}$ 3. $\lim_{x \to 0} \frac{\tan^2(2x^2)}{\sqrt[y^4]{4}}$ The remarkable limit $\lim_{X \to 0} \frac{\sin x}{x} = 1$

lim Sih SX . S/= 2. lin u . 5 S× X - 0 X->O SX=U =1.5=5 3. $\lim_{X \to 0} \frac{\tan^2(2x^2)}{x^4} = \lim_{X \to 0} \frac{\sin^2(2x^2)}{\cos^2(2x^2)} \cdot \frac{1}{x^4}$ = $\lim_{x \to 0} \frac{\sin^2(2x^2)}{(2x^2)^2} \cdot \frac{(2x^2)^2}{\cos^2(2x^2) \cdot x^4}$ $\frac{2}{\cosh^2(2x^2)x^4} = 2^2 = 4$ = lim (511

1- Cos2× $(|-\cos x)(|+\cos x)^{=}$ 5. 1 lim XI $\frac{\sinh^2 x}{x(1+\cos x)} = \lim_{x\to 0}$ (X) - I+Consx - $\frac{\tan^{10}(2x^{20})}{\sin^{200}(3x)} = \lim_{x \to 1} ($ 6. fin X-10 210 Kax1/

Computations!

Using that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, compute the following limits:

1.
$$\lim_{x \to 2} \frac{\sin x}{x}$$

2. $\lim_{x \to 0} \frac{\sin(5x)}{x}$
3. $\lim_{x \to 0} \frac{\tan^2(2x^2)}{x^4}$
4. $\lim_{x \to 0} \frac{\sin e^x}{e^x}$
5. $\lim_{x \to 0} \frac{1 - \cos x}{x}$
6. $\lim_{x \to 0} \frac{\tan^{10}(2x^{20})}{\sin^{200}(3x)}$

7. $\lim_{x \to 0} [(\sin x) (\cos(2x)) (\tan(3x)) (\sec(4x)) (\csc(5x)) (\cot(6x))]$

κ.

An extended version

