Course website http://uoft.me/MAT137.

Test 2 is today! Good Luck.

Today: More indeterminate forms and L’Hôpital’s Rule

Videos for next Monday’s class: 6.11, 6.12, 6.13, 6.14, 6.15, 6.16
1. Prove that $\forall c \in \mathbb{R}, \exists a \in \mathbb{R}$ and functions f and g s.t.

$$\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0, \quad \lim_{x \to a} \frac{f(x)}{g(x)} = c$$

This is how you show that $\frac{0}{0}$ is an indeterminate form.
1. Prove that $\forall c \in \mathbb{R}$, $\exists a \in \mathbb{R}$ and functions f and g s.t.
\[
\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0, \quad \lim_{x \to a} \frac{f(x)}{g(x)} = c
\]
This is how you show that $\frac{0}{0}$ is an indeterminate form.

2. Prove the same way that $\frac{\infty}{\infty}$, $0 \cdot \infty$, and $\infty - \infty$ are also indeterminate forms.
1. Prove that $\forall c \in \mathbb{R}, \exists a \in \mathbb{R}$ and functions f and g s.t.

$$\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0, \quad \lim_{x \to a} \frac{f(x)}{g(x)} = c$$

This is how you show that $\frac{0}{0}$ is an indeterminate form.

2. Prove the same way that $\frac{\infty}{\infty}$, $0 \cdot \infty$, and $\infty - \infty$ are also indeterminate forms.

3. Prove that 1^{∞}, 0^{0}, and ∞^{0} are indeterminate forms. (You will only get $c \geq 0$ this time)
Infinity minus infinity

Compute:

1. \(\lim_{x \to 0} \left[\frac{\csc x}{x} - \frac{\cot x}{x} \right] \)

2. \(\lim_{x \to \infty} [\ln(x + 2) - \ln(3x + 4)] \)

3. \(\lim_{x \to 1} \left[\frac{2}{x^2 - 1} - \frac{1}{x - 1} \right] \)

4. \(\lim_{x \to -\infty} \left[\sqrt{x^2 + 3x} - \sqrt{x^2 - 3x} \right] \)
Exponential indeterminate forms

Compute:

1. \[\lim_{x \to 0} [1 + 2 \sin(3x)]^{4 \cot(5x)} \]

2. \[\lim_{x \to \infty} \left(\frac{x + 2}{x - 2} \right)^{3x} \]

3. \[\lim_{x \to 0^+} x^x \]

4. \[\lim_{x \to \frac{\pi}{2}^-} (\tan x)^{\cos x} \]

5. \[\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1 \over x^2} \]
Let f be a function with domain \mathbb{R}. Assume f is differentiable as many times as needed.

1. Find $a, b \in \mathbb{R}$ such that
 \[
 \lim_{x \to 0} \frac{f(x) - [a + bx]}{x} = 0
 \]

2. Find $a, b, c \in \mathbb{R}$ such that
 \[
 \lim_{x \to 0} \frac{f(x) - [a + bx + cx^2]}{x^2} = 0
 \]

3. Let $N \in \mathbb{N}$. Find a polynomial P_N such that
 \[
 \lim_{x \to 0} \frac{f(x) - P_N(x)}{x^N} = 0
 \]
Indeterminate?

Which of the following are indeterminate forms for limits? If any of them isn’t, then what is the value of such limit?

1. \(\frac{0}{0} \)
2. \(\frac{0}{\infty} \)
3. \(\frac{0}{1} \)
4. \(\frac{\infty}{0} \)
5. \(\frac{\infty}{\infty} \)
6. \(\frac{1}{\infty} \)
7. \(0 \cdot \infty \)
8. \(\infty \cdot \infty \)
9. \(\sqrt{\infty} \)
10. \(\infty - \infty \)
11. \(1^\infty \)
12. \(1^{-\infty} \)
13. \(0^0 \)
14. \(0^\infty \)
15. \(0^{-\infty} \)
16. \(\infty^0 \)
17. \(\infty^{-\infty} \)