Today: More indeterminate forms and L’Hôpital’s Rule

1. Prove that $\forall c \in \mathbb{R}, \exists a \in \mathbb{R}$ and functions f and g s.t.

$$\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0, \quad \lim_{x \to a} \frac{f(x)}{g(x)} = c$$

This is how you show that $\frac{0}{0}$ is an indeterminate form.
1. Prove that $\forall c \in \mathbb{R}, \exists a \in \mathbb{R}$ and functions f and g s.t.

$$
\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0, \quad \lim_{x \to a} \frac{f(x)}{g(x)} = c
$$

This is how you show that $\frac{0}{0}$ is an indeterminate form.

2. Prove the same way that $\frac{\infty}{\infty}$, $0 \cdot \infty$, and $\infty - \infty$ are also indeterminate forms.
1. Prove that \(\forall c \in \mathbb{R}, \exists a \in \mathbb{R} \) and functions \(f \) and \(g \) s.t.

\[
\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0, \quad \lim_{x \to a} \frac{f(x)}{g(x)} = c
\]

This is how you show that \(\frac{0}{0} \) is an indeterminate form.

2. Prove the same way that \(\frac{\infty}{\infty} \), \(0 \cdot \infty \), and \(\infty - \infty \) are also indeterminate forms.

3. Prove that \(1^\infty \), \(0^0 \), and \(\infty^0 \) are indeterminate forms. (You will only get \(c \geq 0 \) this time)
Compute:

1. \(\lim_{x \to 0} \left[\frac{\csc x}{x} - \frac{\cot x}{x} \right] \)

2. \(\lim_{x \to \infty} \left[\ln(x + 2) - \ln(3x + 4) \right] \)

3. \(\lim_{x \to 1} \left[\frac{2}{x^2 - 1} - \frac{1}{x - 1} \right] \)

4. \(\lim_{x \to -\infty} \left[\sqrt{x^2 + 3x} - \sqrt{x^2 - 3x} \right] \)
Compute:

1. \(\lim_{x \to 0} \left[1 + 2 \sin(3x) \right]^4 \cot(5x) \)

2. \(\lim_{x \to \infty} \left(\frac{x + 2}{x - 2} \right)^{3x} \)

3. \(\lim_{x \to 0^+} x^x \)

4. \(\lim_{x \to \frac{\pi}{2}^-} \left(\tan x \right)^{\cos x} \)

5. \(\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} \)
Let f be a function with domain \mathbb{R}. Assume f is differentiable as many times as needed.

1. Find $a, b \in \mathbb{R}$ such that
\[\lim_{x \to 0} \frac{f(x) - [a + bx]}{x} = 0 \]

2. Find $a, b, c \in \mathbb{R}$ such that
\[\lim_{x \to 0} \frac{f(x) - [a + bx + cx^2]}{x^2} = 0 \]

3. Let $N \in \mathbb{N}$. Find a polynomial P_N such that
\[\lim_{x \to 0} \frac{f(x) - P_N(x)}{x^N} = 0 \]
Indeterminate?

Which of the following are indeterminate forms for limits? If any of them isn’t, then what is the value of such limit?

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{0}{0}$</td>
<td>5</td>
<td>$\frac{\infty}{\infty}$</td>
<td>10</td>
<td>$\infty - \infty$</td>
<td>15</td>
<td>$0^{-\infty}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$\frac{0}{\infty}$</td>
<td>6</td>
<td>$\frac{1}{\infty}$</td>
<td>11</td>
<td>1^∞</td>
<td>16</td>
<td>∞^0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\frac{0}{1}$</td>
<td>7</td>
<td>$0 \cdot \infty$</td>
<td>12</td>
<td>$1^{-\infty}$</td>
<td>17</td>
<td>∞^∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\frac{\infty}{0}$</td>
<td>8</td>
<td>$\infty \cdot \infty$</td>
<td>13</td>
<td>0^0</td>
<td>18</td>
<td>$\infty^{-\infty}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$\sqrt{\infty}$</td>
<td>14</td>
<td>0^∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>