MAT137

- Test 2 is on Friday, December 2
- Today: Indeterminate forms and L'Hôpital's Rule
- Watch videos $6.10,6.12$, as well as 6.11 before next Wednesday's class.

Computations

Calculate:

1. $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-6}{x^{2}+3 x-10}$
2. $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$
3. $\lim _{x \rightarrow 0} \frac{e^{2 x^{2}}-\cos x}{x \sin x}$

Indeterminate?

Which of the following are indeterminate forms for limits? If any of them isn't, then what is the value of such limit?

1. $\frac{0}{0}$
2. $\frac{0}{\infty}$
3. $\frac{0}{1}$
4. $\sqrt{\infty} \quad$ 6. $\frac{1}{\infty}$
5. $\frac{\infty}{\infty}$
6. $0 \cdot \infty$
7. $\infty \cdot \infty$

More computations

Calculate:

1. $\lim _{x \rightarrow \infty}(\sin x)\left(e^{1 / x}-1\right)$
2. $\lim _{x \rightarrow \infty} x \cos \frac{2}{x}$
3. $\lim _{x \rightarrow \infty} x \sin \frac{2}{x}$
4. $\lim _{x \rightarrow 1}\left[(\ln x) \tan \frac{\pi x}{2}\right]$

Limits from graphs

Compute:

Sample solution of the last slide's limit

Note that $H(x)$ and $H(2+3 x)-1$ are both differentiable as $x \rightarrow 0$. Moreover, $H(2+3 x)-1 \neq 0$ for values of x near 0 but not equal to 0 .

Also, $\lim _{x \rightarrow 0} H(x)=0$ and $\lim _{x \rightarrow 0}(H(2+3 x)-1)=0$. Therefore, we can apply L'Hôpital's rule.

In order to do so, note that

- $H^{\prime}(x)=1$ as $x \rightarrow 0$,
- $(H(2+3 x)-1)^{\prime}=H^{\prime}(2+3 x) \cdot 3$ as $x \rightarrow 0$, and
- $H^{\prime}(x)=-2$ as $x \rightarrow 2$.

Therefore, $\lim _{x \rightarrow 0} H^{\prime}(x)=1$ and $\lim _{x \rightarrow 0}(H(2+3 x)-1)^{\prime}=-6$. Thus
$\lim _{x \rightarrow 0} \frac{H(x)}{H(2+3 x)-1}=-\frac{1}{6}$

