• Test 2 is on Friday, December 2.

• Today: Monotonocity.

• Homework before Wednesday's class: watch videos 6.1, 6.2.

Let
$$g(x) = x^3(x^2 - 4)^{1/3}$$
.

Find out on which intervals this function is increasing or decreasing.

Using that information, sketch its graph.

To save time, here is the first derivative:

$$g'(x) = \frac{x^2(11x^2 - 36)}{3(x^2 - 4)^{2/3}}$$

- 1. Construct a function f satisfying all the following properties:
 - f is continuous on ${\mathbb R}$
 - f'(0) = 0
 - f does not have a local extremum at 0.
 - There isn't an interval centered at 0 on which f is monotone.

- 1. Construct a function f satisfying all the following properties:
 - f is continuous on ${\mathbb R}$
 - f'(0) = 0
 - f does not have a local extremum at 0.
 - There isn't an interval centered at 0 on which f is monotone.
- 2. Check the function $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0

Find all functions f such that, for all $x \in \mathbb{R}$: $f''(x) = x + \sin x$.

Prove that, for every $x \in \mathbb{R}$

 $e^x \ge 1 + x$

Hint: When is the function $f(x) = e^x - 1 - x$ increasing or decreasing?

Let
$$f(x) = \frac{\sin x}{3 + \cos x}$$
.

Find the maximum and minimum of f.