MAT137

- Test 2 is on Friday, December 2.
- Today: Monotonocity.
- Homework before Wednesday's class:
watch videos 6.1, 6.2.

Intervals of monotonicity

Let $g(x)=x^{3}\left(x^{2}-4\right)^{1 / 3}$.

Find out on which intervals this function is increasing or decreasing.
Using that information, sketch its graph.

To save time, here is the first derivative:

$$
g^{\prime}(x)=\frac{x^{2}\left(11 x^{2}-36\right)}{3\left(x^{2}-4\right)^{2 / 3}}
$$

A sneaky function

1. Construct a function f satisfying all the following properties:

- f is continuous on \mathbb{R}
- $f^{\prime}(0)=0$
- f does not have a local extremum at 0 .
- There isn't an interval centered at 0 on which f is monotone.

A sneaky function

1. Construct a function f satisfying all the following properties:

- f is continuous on \mathbb{R}
- $f^{\prime}(0)=0$
- f does not have a local extremum at 0 .
- There isn't an interval centered at 0 on which f is monotone.

2. Check the function $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$

Your first integration

Find all functions f such that, for all $x \in \mathbb{R}$: $f^{\prime \prime}(x)=x+\sin x$.

Inequalities

Prove that, for every $x \in \mathbb{R}$

$$
e^{x} \geq 1+x
$$

Hint: When is the function $f(x)=e^{x}-1-x$ increasing or decreasing?

From last week: Trig extrema

Let $f(x)=\frac{\sin x}{3+\cos x}$.
Find the maximum and minimum of f.

