Test 2 is on Friday, November 30. Deadline to request accommodations: November 23

Today: Rolle’s Theorem

Homework before Wednesday’s class: watch videos 5.7, 5.8, 5.9.
We want to prove this theorem:

Theorem 1

Let f be a differentiable function defined on an interval I.

IF $\forall x \in I, f'(x) \neq 0$

THEN f is one-to-one on I.

1. Transform $[P \Rightarrow Q]$ into $[(\neg Q) \Rightarrow (\neg P)]$.

 You get an equivalent Theorem (call it "Theorem 2").

2. Write the definition of "f is not one-to-one on $I". You will need it.

3. Recall the statement of Rolle's Theorem. You will need it.

4. Do some rough work if needed.

5. Write a complete proof for Theorem 2.
We want to prove this theorem:

Theorem 1
Let \(f \) be a differentiable function defined on an interval \(I \).
IF \(\forall x \in I, f'(x) \neq 0 \)
THEN \(f \) is one-to-one on \(I \).

1. Transform \([P \implies Q] \) into \([(\neg Q) \implies (\neg P)]\).
 You get an equivalent Theorem (call it “Theorem 2”).
 We are going to prove Theorem 2 instead.

2. Write the definition of “\(f \) is not one-to-one on \(I \)”.
 You will need it.

3. Recall the statement of Rolle’s Theorem.
 You will need it.

4. Do some rough work if needed.

5. Write a complete proof for Theorem 2.
A variant

Complete this variation on Theorem 2. Use the weakest conditions you can to make it true.

Theorem 3

Let $a < b$. Let f be a function defined on $[a, b]$. IF

- (Some conditions on continuity and differentiability)
- f is not one-to-one on $[a, b]$

THEN $\exists c \in (a, b)$ such that $f'(c) = 0$.
Why the three hypotheses are necessary

You have proven

Theorem 3

Let $a < b$. Let f be a function defined on $[a, b]$.

IF

1. f is continuous on $[a, b]$
2. f is differentiable on (a, b)
3. f is not one-to-one on $[a, b]$

THEN $\exists c \in (a, b)$ such that $f'(c) = 0$.

Give three examples to justify that each of the three hypotheses are necessary for the theorem to be true. (Graphs of the examples are enough).
Zeroes of the derivative

Construct a function f that is differentiable on \mathbb{R} and such that

1. f has exactly 2 zeroes and f' has exactly 1 zero.
2. f has exactly 2 zeroes and f' has exactly 2 zeroes.
3. f has exactly 3 zeroes and f' has exactly 1 zero.
4. f has exactly 1 zero and f' has infinitely many zeroes.
How many zeroes?

Let

\[f(x) = e^x - \sin x + x^2 + 10x \]

How many zeroes does \(f \) have?
The second Theorem of Rolle

Complete statement for this theorem and prove it.

Rolle’s Theorem 2

Let \(a < b \). Let \(f \) be a function defined on \([a,b]\).

IF

- (Some conditions on continuity and derivatives)
- \(f(a) = f'(a) = 0 \)
- \(f(b) = 0 \)

THEN \(\exists c \in (a, b) \) such that \(f''(c) = 0 \).

Hint: Apply the 1st Rolle’s Theorem to \(f \), then do something else.
The N-th Theorem of Rolle

Complete the statement for this theorem and prove it.

Rolle’s Theorem N

Let N be a positive integer.
Let $a < b$. Let f be a function defined on $[a, b]$.
IF
- (Some conditions on continuity and derivatives)
- (Some conditions at a)
- $f(b) = 0$

THEN $\exists c \in (a, b)$ such that $f^{(N)}(c) = 0$.