Test 2 is on Friday, December 3.

Today: the Mean Value Theorem (MVT).

Homework before Tuesday’s class: watch videos 5.10, 5.11, as well as 5.12.
Positive derivative implies increasing

Use the MVT to prove

Theorem

Let $a < b$. Let f be a differentiable function on (a, b).
- IF $\forall x \in (a, b), f'(x) > 0$,
- THEN f is increasing on (a, b).
Positive derivative implies increasing

Use the MVT to prove

Theorem

Let $a < b$. Let f be a differentiable function on (a, b).

- IF $\forall x \in (a, b), f'(x) > 0$,
- THEN f is increasing on (a, b).

1. Recall the definition of what you are trying to prove.
2. From that definition, figure out the structure of the proof.
3. If you have used a theorem, did you verify the hypotheses?
4. Are there words in your proof, or just equations?
Theorem

Let $a < b$. Let f be a differentiable function on (a, b).

- IF $\forall x \in (a, b), f'(x) > 0$,
- THEN f is increasing on (a, b).

Proof.

- From the MVT, $f'(c) = \frac{f(b) - f(a)}{b - a}$
- We know $b - a > 0$ and $f'(c) > 0$
- Therefore $f(b) - f(a) > 0$, so $f(b) > f(a)$
- f is increasing.
Cauchy’s MVT - Part 1

Here is a new theorem:

We want to prove this Theorem

Let $a < b$. Let f and g be functions defined on $[a, b]$. IF (some conditions) THEN $\exists c \in (a, b)$ such that $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

What is wrong with this “proof”? By MVT, $\exists c \in (a, b)$ s.t. $f'(c) = f(b) - f(a)$ and $b - a$. By MVT, $\exists c \in (a, b)$ s.t. $g'(c) = g(b) - g(a)$ and $b - a$. Divide the two equations and we get what we wanted.
Cauchy’s MVT - Part 1

Here is a new theorem:

We want to prove this Theorem

Let \(a < b \). Let \(f \) and \(g \) be functions defined on \([a, b]\).

IF (some conditions)

THEN \(\exists c \in (a, b) \) such that

\[
\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}
\]

What is wrong with this “proof”?

- By MVT, \(\exists c \in (a, b) \) s.t. \(f'(c) = \frac{f(b) - f(a)}{b - a} \)
- By MVT, \(\exists c \in (a, b) \) s.t. \(g'(c) = \frac{g(b) - g(a)}{b - a} \)
- Divide the two equations and we get what we wanted.
We want to prove this theorem

Let \(a < b \). Let \(f \) and \(g \) be functions defined on \([a, b]\).

IF (some conditions)

THEN \(\exists c \in (a, b) \) such that

\[
\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}
\]
We want to prove this theorem

Let $a < b$. Let f and g be functions defined on $[a, b]$. IF (some conditions) THEN $\exists c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

1. There is one number $M \in \mathbb{R}$ so that you will be able to apply Rolle’s Theorem to the new function $H(x) = f(x) - Mg(x)$ on the interval $[a, b]$. What is M?
We want to prove this theorem

Let \(a < b \). Let \(f \) and \(g \) be functions defined on \([a, b]\).
IF (some conditions)
THEN \(\exists c \in (a, b) \) such that
\[
\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}
\]

1. There is one number \(M \in \mathbb{R} \) so that you will be able to apply Rolle’s Theorem to the new function \(H(x) = f(x) - Mg(x) \) on the interval \([a, b]\). What is \(M \)?
2. Apply Rolle’s Theorem to \(H \). What do you conclude?
3. Fill in the missing hypotheses in the theorem above.
4. Prove it.
Proving difficult identities

Prove that, for every $x \geq 0$,

$$\arcsin \frac{1-x}{1+x} + 2 \arctan \sqrt{x} = \frac{\pi}{2}$$

Hint: Take derivatives.