MAT137

- Today: Local extrema.
- Homework before Wednesday's class:
watch videos 5.5, 5.6
(also you may want to watch 5.7, 5.8, 5.9 in advance).

Definition of local extremum

Find local and global extrema of the function with this graph:

Where is the maximum?

We know the following about the function h :

- The domain of h is $(-4,4)$.
- h is continuous on its domain.
- h is differentiable on its domain, except at 0 .
- $h^{\prime}(x)=0 \quad \Longleftrightarrow \quad x=-1$ or 1 .

What can you conclude about the maximum of h ?

Where is the maximum?

We know the following about the function h :

- The domain of h is $(-4,4)$.
- h is continuous on its domain.
- h is differentiable on its domain, except at 0 .
- $h^{\prime}(x)=0 \quad \Longleftrightarrow \quad x=-1$ or 1 .

What can you conclude about the maximum of h ?

1. h has a maximum at $x=-1$, or 1 .
2. h has a maximum at $x=-1,0$, or 1 .
3. h has a maximum at $x=-4,1,0,1$, or 4 .
4. None of the above.

Fractional exponents

Let $g(x)=x^{2 / 3}(x-1)^{3}$.
Find local and global extrema of g on $[-1,2]$.

What can you conclude?

We know the following about the function f.

- f has domain \mathbb{R}.
- f is continuous
- $f(0)=0$
- For every $x \in \mathbb{R}, f(x) \geq x$.

What can you conclude about $f^{\prime}(0)$? Prove it.
Hint: Sketch the graph of f. Looking at the graph, make a conjecture.
To prove it, imitate the proof of the Local EVT from Video 5.3.

Trig extrema

Let $f(x)=\frac{\sin x}{3+\cos x}$.
Find the maximum and minimum of f.

Practice: topics from before

1) Find $\tan (\operatorname{arcsec} x)$ for $0<x<\pi / 2$.
2) Find $(\operatorname{arccot} x)^{\prime}$.
3) Find y^{\prime} if $x^{y}=y^{x}$.
4) Find the equation of the tangent line to the curve $x^{y}=y^{x}$ in the (x, y)-plane at the point $\left(x_{0}, y_{0}\right)=(2,4)$.
