MAT137

- Today: Properties of series.
- Homework before Tuesday's class: watch videos 13.10, 13.12 , as well as 13.11 .

Rapid question: Convergent or divergent?

$$
\begin{aligned}
& \text { 1. } \sum_{n=0}^{\infty} \frac{1}{2^{n}} \\
& \text { 2. } \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}} \\
& \text { 3. } \sum_{n=1}^{\infty} \frac{1}{2^{n / 2}}
\end{aligned}
$$

Rapid question: Convergent or divergent?

1. $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}$
3. $\sum_{n=1}^{\infty} \frac{1}{2^{n / 2}}$
4. $\sum_{n=5}^{\infty} \frac{3^{n}}{2^{2 n+1}}$
5. $\sum_{n=3}^{\infty} \frac{3^{n}}{1000 \cdot 2^{n+2}}$

True or False - The Necessary Condition

1. IF $\lim _{n \rightarrow \infty} a_{n}=0$, THEN $\sum_{n}^{\infty} a_{n}$ is convergent.
2. IF $\sum_{n}^{\infty} a_{n}$ is convergent THEN $\lim _{n \rightarrow \infty} a_{n}=0$.
3. IF $\sum_{n}^{\infty} a_{n}$ is divergent THEN $\lim _{n \rightarrow \infty} a_{n} \neq 0$.

Are all decimal expansions well-defined?

We had defined a real number as "any number with a decimal expansion". Now we understand what it means to write a number with an infinite decimal expansion. It is a series!

$$
0 . a_{1} a_{2} a_{3} a_{4} a_{5} \cdots=\frac{a_{1}}{10}+\frac{a_{2}}{100}+\frac{a_{3}}{1000}+\ldots
$$

for any "digits" $a_{1}, a_{2}, a_{3}, \ldots$

But this raises a question: will these series always be convergent, no matter which infinite string of digits we choose?

Yes, they will! Prove it.
(Hint: all the terms in the series are positive.)

True or False - Series

Let $\sum_{n=0}^{\infty} a_{n}$ be a series. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its partial-sum sequence.
5. IF $\lim _{n \rightarrow \infty} S_{2 n}$ exists, THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.
6. IF $\lim _{n \rightarrow \infty} S_{2 n}$ exists and $\lim _{n \rightarrow \infty} a_{n}=0$, THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.
7. IF $\sum_{n=0}^{\infty} a_{n}$ is convergent,

THEN $\lim _{k \rightarrow \infty}\left[\sum_{n=k}^{\infty} a_{n}\right]=0$.
8. IF $\sum_{n=0}^{\infty} a_{2 n}$ is convergent and $\sum_{n=0}^{\infty} a_{2 n+1}$ is convergent,

THEN $\sum_{n=0}^{\infty} a_{n}$ is convergent.

Recall: Series expansion

From the geometric series, we know that when $|x|<1$, we can expand the function $f(x)=\frac{1}{1-x}$ as a series:

$$
f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Find similar ways to write the following functions as series:

$$
\text { 1. } g(x)=\frac{1}{1+x} \quad \text { 2. } h(x)=\frac{1}{1-x^{2}} \quad \text { 3. } k(x)=\frac{1}{2-x}
$$

Challenge

We want to calculate the value of

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}
$$

Hints:

1. Compute $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$
2. Compute $\frac{d}{d x}[\arctan x]$
3. Pretend you can take derivatives and antiderivatives of series the way you can take them of sums. Which series adds up to $\arctan x$?
4. Now attempt the original problem.
