MAT137

• Today: Definition of series.

• Homework before Wednesday's class: watch videos 13.5, 13.6, 13.7.

Rapid questions: review of improper integrals

$$1. \int_{1}^{\infty} \frac{1}{x^2} dx$$

$$2. \int_1^\infty \frac{1}{\sqrt{x}} \, dx$$

$$3. \int_1^\infty \frac{1}{x^2 + \sqrt{x}} \, dx$$

Rapid questions: review of improper integrals

1.
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 4. $\int_{0}^{1} \frac{1}{x^2} dx$

4.
$$\int_0^1 \frac{1}{x^2} dx$$

2.
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
 5. $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$

$$5. \int_0^1 \frac{1}{\sqrt{x}} dx$$

3.
$$\int_{1}^{\infty} \frac{1}{x^2 + \sqrt{x}} dx$$
 6. $\int_{0}^{1} \frac{1}{x^2 + \sqrt{x}} dx$

$$\int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx$$

Rapid questions: review of improper integrals

1.
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 4. $\int_{0}^{1} \frac{1}{x^2} dx$ 7. $\int_{0}^{\infty} \frac{1}{x^2} dx$

4.
$$\int_0^1 \frac{1}{x^2} dx$$

7.
$$\int_0^\infty \frac{1}{x^2} dx$$

$$2. \int_1^\infty \frac{1}{\sqrt{x}} \, dx$$

$$5. \int_0^1 \frac{1}{\sqrt{x}} \, dx$$

2.
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
 5. $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$ 8. $\int_{0}^{\infty} \frac{1}{\sqrt{x}} dx$

3.
$$\int_{1}^{\infty} \frac{1}{x^2 + \sqrt{x}} dx$$

6.
$$\int_0^1 \frac{1}{x^2 + \sqrt{x}} dx$$

3.
$$\int_{1}^{\infty} \frac{1}{x^2 + \sqrt{x}} dx = 6. \int_{0}^{1} \frac{1}{x^2 + \sqrt{x}} dx = 9. \int_{0}^{\infty} \frac{1}{x^2 + \sqrt{x}} dx$$

Boris Khesin **MAT137** March 7, 2023

Trig series: convergent or divergent?

1.
$$\sum_{n=0}^{\infty} \sin(n\pi)$$

$$2. \sum_{n=0}^{\infty} \cos(n\pi)$$

A telescopic series

I want to calculate the value of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$.

1. Find a formula for the *k*-th partial sum $S_k = \sum_{n=1}^k \frac{1}{n^2 + 2n}$.

Hint: Write
$$\frac{1}{n^2 + n} = \frac{A}{n} + \frac{B}{n+2}$$

2. Using the definition of series, compute the value of

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$$

What is wrong with this calculation? Fix it

Claim:

$$\sum_{n=2}^{\infty} \ln \frac{n}{n+1} = \ln 2$$

"Justification"

$$\sum_{n=2}^{\infty} \ln \frac{n}{n+1} = \sum_{n=2}^{\infty} [\ln n - \ln(n+1)]$$

$$= \sum_{n=2}^{\infty} \ln(n) - \sum_{n=2}^{\infty} \ln(n+1)$$

$$= (\ln 2 + \ln 3 + \ln 4 + \dots) - (\ln 3 + \ln 4 + \dots)$$

$$= \ln 2$$

Help me write the next problem set

In the next problem set I want to give you a series and ask you to calculate its value from the definition. I want the sequence of partial sums $\{S_n\}_{n=1}^{\infty}$ to be

$$\forall n \geq 1, \ S_n = \frac{1}{n^2}.$$

What series should I ask you to calculate?

Harmonic series

For each n > 0 we define

 $r_n =$ smallest power of 2 that is greater than or equal to n

Consider the series
$$S = \sum_{n=1}^{\infty} \frac{1}{r_n}$$

- 1. Compute r_1 through r_8
- 2. Compute the partial sums S_1, S_2, S_4, S_8 for the series S.
- 3. Calculate $S = \sum_{n=1}^{\infty} \frac{1}{r_n}$.
- 4. "Compare" the harmonic series $H = \sum_{n=1}^{\infty} \frac{1}{n}$ and $S = \sum_{n=1}^{\infty} \frac{1}{r_n}$. Is H convergent or divergent?