MAT137

- Today: Constructing new power series.
- Homework before Tuesday's class: watch videos 14.12 , 14.14.

Taylor series gymnastics

Write the following functions as power series centered at 0 . Write them first with sigma notation, and then write out the first few terms.

$$
\begin{array}{ll}
\text { 1. } f(x)=\frac{x^{2}}{1+x} & \text { 4. } f(x)=\cos ^{2} x \\
\text { 2. } f(x)=\left(e^{x}\right)^{2} & \text { 5. } f(x)=\ln \frac{1+x}{1-x} \\
\text { 3. } f(x)=\sin \left(2 x^{3}\right) & \text { 6. } f(x)=\frac{1}{\left(1+x^{2}\right)(1+x)}
\end{array}
$$

Note: You do not need to take any derivatives. You can reduce them all to other Maclaurin series you know.

Arctan

1. Write the function

$$
f(x)=\arctan x
$$

as a power series centered at 0 .
Hint: Compute the first derivative. Then stop to think.

Arctan

1. Write the function

$$
f(x)=\arctan x
$$

as a power series centered at 0 .
Hint: Compute the first derivative. Then stop to think.
2. What is $f^{(203)}(0)$?

Other operations with Taylor series

Obtain the first four non-zero terms of the Maclaurin series of these functions:

1. $f(x)=e^{x} \sin x$
2. $g(x)=e^{\sin x}$

Hint: Treat the power series the same way you would treat a polynomial.

Other operations with Taylor series

Obtain the first four non-zero terms of the Maclaurin series of these functions:

1. $f(x)=e^{x} \sin x$
2. $g(x)=e^{\sin x}$

Hint: Treat the power series the same way you would treat a polynomial.

Follow-up question: What is $g^{(4)}(0)$?

Parity

1. Let f be an odd, C^{∞} function. What can you say about its Maclaurin series? What if f is even?

Hint: Think of sin and cos.
2. Prove it.

Hint: Use the general formula for the Maclaurin series. What can you say about $h(0)$ if h is odd? If h is even?

Tangent

There is no nice, compact formula for the Maclaurin series of tan, but we can obtain the first few terms. Set

$$
\tan x=c_{1} x+c_{3} x^{3}+c_{5} x^{5}+\ldots
$$

By definition of tan, we have:

$$
\sin x=(\cos x)(\tan x)
$$

So
$\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots\right]=\left[1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots\right] \cdot\left[c_{1} x+c_{3} x^{3}+c_{5} x^{5}+\ldots\right]$
Expand. Obtain equations for the coefficients c_{n} and solve for the first few ones.

