Today: New power series.

Write the following functions as power series centered at 0. Write them first with sigma notation, and then write out the first few terms.

1. \(f(x) = \frac{x^2}{1 + x} \)
2. \(f(x) = (e^x)^2 \)
3. \(f(x) = \sin(2x^3) \)
4. \(f(x) = \cos^2 x \)
5. \(f(x) = \ln \frac{1 + x}{1 - x} \)
6. \(f(x) = \frac{1}{(1 + x^2)(1 + x)} \)

Note: You do not need to take any derivatives. You can reduce them all to other Maclaurin series you know.
1. Write the function

\[f(x) = \arctan x \]

as a power series centered at 0.

Hint: Compute the first derivative. Then stop to think.
1. Write the function

\[f(x) = \arctan x \]

as a power series centered at 0.

Hint: Compute the first derivative. Then stop to think.

2. What is \(f^{(203)}(0) \)?
Other operations with Taylor series

Obtain the **first four non-zero terms** of the Maclaurin series of these functions:

1. \(f(x) = e^x \sin x \)

2. \(g(x) = e^{\sin x} \)

Hint: Treat the power series the same way you would treat a polynomial.
Other operations with Taylor series

Obtain the **first four non-zero terms** of the Maclaurin series of these functions:

1. \(f(x) = e^x \sin x \)

2. \(g(x) = e^{\sin x} \)

Hint: Treat the power series the same way you would treat a polynomial.

Follow-up question: What is \(g^{(4)}(0) \)?
1. Let \(f \) be an odd, \(C^\infty \) function. What can you say about its Maclaurin series? What if \(f \) is even?

\textit{Hint:} Think of \(\sin \) and \(\cos \).

2. Prove it.

\textit{Hint:} Use the general formula for the Maclaurin series. What can you say about \(h(0) \) if \(h \) is odd? If \(h \) is even?
There is no nice, compact formula for the Maclaurin series of tan, but we can obtain the first few terms. Set

$$\tan x = c_1 x + c_3 x^3 + c_5 x^5 + \ldots$$

By definition of tan, we have:

$$\sin x = (\cos x)(\tan x)$$

So

$$\left[x - \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots\right] = \left[1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots\right] \cdot \left[c_1 x + c_3 x^3 + c_5 x^5 + \ldots\right]$$

Expand. Obtain equations for the coefficients c_n and solve for the first few ones.