MAT137

- Today: Taylor polynomials.
- Homework before Tuesday's class: watch videos 14.5, 14.6.

The definitions of Taylor polynomial

Let f be a function defined at and near $a \in \mathbb{R}$. Let $n \in \mathbb{N}$.
Let P_{n} be the n-th Taylor polynomial for f at a.
Which ones of these is true?

1. P_{n} is an approximation for f of order n near a.
2. f is an approximation for P_{n} of order n near a.
3. $\lim _{x \rightarrow a}\left[f(x)-P_{n}(x)\right]=0$
4. $\lim _{x \rightarrow a} \frac{f(x)-P_{n}(x)}{(x-a)^{n}}=0$
5. \exists a function R_{n} s.t. $f(x)=P_{n}(x)+R_{n}(x)$ and $\lim _{x \rightarrow a} \frac{R_{n}(x)}{(x-a)^{n}}=0$
6. $f^{(n)}(a)=P_{n}^{(n)}(a)$
7. $\forall k=0,1,2, \ldots, n, \quad f^{(k)}(a)=P_{n}^{(k)}(a)$

Approximating functions

Which one of the following functions is a better approximation for $F(x)=e^{x}$ near 0 ?

1. $f(x)=1+x+\frac{x^{2}}{2}$
2. $g(x)=\sin x+\cos x+x^{2}$
3. $h(x)=e^{-x}+2 x$

[graph]

An explicit equation for Taylor polynomials

1. Find a polynomial P of degree 3 that satisfies

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

2. Find all polynomials P of degree ≤ 6 that satisfy

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

3. Find a polynomial P of smallest possible degree that satisfies

$$
P(0)=A, \quad P^{\prime}(0)=B, \quad P^{\prime \prime}(0)=C, \quad P^{\prime \prime \prime}(0)=D
$$

4. Find an explicit formula for the 3-rd Taylor polynomial for a function f at 0 .
5. Find an explicit formula for the n-th Taylor polynomial for a function f at 0 .

Examples

Use your shiny new explicit formula to compute the Taylor polynomials of degree ≤ 6 for these functions at 0 :

1. $f(x)=e^{x}$
2. $g(x)=\sin x$
3. $h(x)=\cos x$

Curvature

Definition

Let C be a curve and let P be a point in C.

- The osculating circle of C at P is the circle that is the best approximation for C near P.
- The curvature of C at P is $\frac{1}{R}$, where R is the radius of the osculating circle.

Curvature

Definition

Let C be a curve and let P be a point in C.

- The osculating circle of C at P is the circle that is the best approximation for C near P.
- The curvature of C at P is $\frac{1}{R}$, where R is the radius of the osculating circle.

Let $a>0$. Let C be the graph of $y=a x^{2}$. Find the radius of the osculating circle of C at $(0,0)$.

Curvature

Definition

Let C be a curve and let P be a point in C.

- The osculating circle of C at P is the circle that is the best approximation for C near P.
- The curvature of C at P is $\frac{1}{R}$, where R is the radius of the osculating circle.

Let $a>0$. Let C be the graph of $y=a x^{2}$. Find the radius of the osculating circle of C at $(0,0)$. You can try two different things:

1. Go to http://tinyurl.com/osculatingcircle and play with the sliders. Make a conjecture.
2. Write the equation of a circle tangent to C at $(0,0)$ with radius R. Then use the definition of "good approximation" to find the value of R.
