MAT137

- Today: Ratio test.
- Homework before Wednesday's class: watch videos 14.1, 14.2.

Ratio test: Convergent or divergent?

Use Ratio test to decide which series are convergent:

$$
\begin{array}{ll}
\text { 1. } \sum_{n=1}^{\infty} \frac{3^{n}}{n!} & \text { 3. } \sum_{n=2}^{\infty} \frac{1}{\ln n} \\
\text { 2. } \sum_{n=1}^{\infty} \frac{(2 n)!}{n!^{2} 3^{n+1}} & \text { 4. } \sum_{n=2}^{\infty} \frac{n!}{n^{n}}
\end{array}
$$

Root test

Here is a new convergence test

Theorem

Let $\sum_{n} a_{n}$ be a series. Assume the limit $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ exists.

- IF $0 \leq L<1$ THEN the series is ???
- IF $L>1$ THEN the series is ???

Without writing an actual proof, guess the conclusion of the theorem and argue why it makes sense.

Hint: Imitate the explanation on Video 13.18 for the Ratio Test. For large values of n, what is $\left|a_{n}\right|$ approximately?

Back to your mission: prove ...

$$
\begin{gathered}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}+\ldots \\
=\ln 2 \\
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\frac{1}{13}+\frac{1}{15}-\frac{1}{8}+\ldots \\
=\frac{3}{2} \ln 2
\end{gathered}
$$

STEP 2: Writing other sums in terms of harmonic sums

Recall: $H_{N}=\sum_{n=1}^{N} \frac{1}{n}$. It is called a harmonic sum.
Write the following sums in terms of harmonic sums.

1. $E_{N}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\ldots+\frac{1}{2 N}$
2. $O_{N}=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots+\frac{1}{2 N-1}$
3. $A_{2 N}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots-\frac{1}{2 N}$

STEP 3: Finish them!

- You proved there exists a convergent sequence $\left\{c_{N}\right\}_{N=1}^{\infty}$ such that

$$
\forall N \in \mathbb{N}, \quad H_{N}=\ln N+c_{N}
$$

- You wrote $A_{2 N}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots-\frac{1}{2 N}$ in terms of harmonic sums.

Calculate

$$
A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}+\ldots
$$

STEP 3: Finish them!

- You proved there exists a convergent sequence $\left\{c_{N}\right\}_{N=1}^{\infty}$ such that

$$
\forall N \in \mathbb{N}, \quad H_{N}=\ln N+c_{N}
$$

- You wrote $A_{2 N}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots-\frac{1}{2 N}$ in terms of harmonic sums.

Calculate

$$
A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}+\ldots
$$

Challenge! Calculate

$$
B=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\frac{1}{13}+\frac{1}{15}-\frac{1}{8}+\ldots
$$

