MAT137

- Today: Absolute and conditional convergence.
- Homework before Tuesday's class: watch videos 13.18, 13.19.

Rapid questions: Convergent or divergent?

$$
\begin{aligned}
& \text { 1. } \sum_{n}^{\infty}(1.1)^{n} \\
& \text { 2. } \sum_{n}^{\infty}(0.9)^{n} \\
& \text { 3. } \sum_{n}^{\infty} \frac{(-1)^{n}}{\ln n} \\
& \text { 4. } \sum_{n}^{\infty} \frac{(-1)^{n}}{e^{1 / n}}
\end{aligned}
$$

Rapid questions: Convergent or divergent?

$$
\begin{array}{ll}
\text { 1. } \sum_{n}^{\infty}(1.1)^{n} & \text { 5. } \sum_{n}^{\infty} \frac{1}{n^{1.1}} \\
\text { 2. } \sum_{n}^{\infty}(0.9)^{n} & \text { 6. } \sum_{n}^{\infty} \frac{1}{n^{0.9}} \\
\text { 3. } \sum_{n}^{\infty} \frac{(-1)^{n}}{\ln n} & \text { 7. } \sum_{n}^{\infty} \frac{n^{3}+n^{2}+11}{n^{4}+2 n-3} \\
\text { 4. } \sum_{n}^{\infty} \frac{(-1)^{n}}{e^{1 / n}} & \text { 8. } \sum_{n}^{\infty} \frac{\sqrt{n^{5}+2 n+16}}{n^{4}-11 n+7}
\end{array}
$$

True or False - Absolute Values

1. IF $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent, THEN $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ is convergent.
2. IF $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ is convergent, THEN $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent.
3. IF $\sum_{n=1}^{\infty} a_{n}$ is convergent,

THEN $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.
4. IF $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent,

THEN $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Positive and negative terms

- Let $\sum a_{n}$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call \sum (N.T.) the sum of only the negative terms of the same series.

Positive and negative terms

- Let $\sum a_{n}$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call $\sum($ N.T. $)$ the sum of only the negative terms of the same series.

IF $\sum($ P.T. $)$ is...	AND $\sum($ N.T. $)$ is...	THEN $\sum a_{n}$ may be...
CONV	CONV	
∞	CONV	
CONV	$-\infty$	
∞	$-\infty$	

Positive and negative terms

- Let $\sum a_{n}$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call $\sum($ N.T. $)$ the sum of only the negative terms of the same series.

	$\sum($ P.T. $)$ may be...	$\sum($ N.T. $)$ may be...
In general		
If $\sum a_{n}$ is CONV		
If $\sum\left\|a_{n}\right\|$ is CONV		
If $\sum a_{n}$ is ABS CONV		
If $\sum a_{n}$ is COND CONV		
If $\sum a_{n}=\infty$		March 16,2023
If $\sum a_{n}$ is DIV oscillating		
Boris Khesin		

Challenge (from previous slides)

We want to calculate the value of

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}
$$

Hints:

1. Compute $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$
2. Compute $\frac{d}{d x}[\arctan x]$
3. Pretend you can take derivatives and antiderivatives of series the way you can take them of sums. Which series adds up to $\arctan x$?
4. Now attempt the original problem.

Your mission: prove ...

$$
\begin{gathered}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}+\ldots \\
=\ln 2
\end{gathered}
$$

$$
\begin{gathered}
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\frac{1}{13}+\frac{1}{15}-\frac{1}{8}+\ldots \\
=\frac{3}{2} \ln 2
\end{gathered}
$$

STEP 1: How quickly do harmonic sums grow?

Let us call $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. It is called a harmonic sum.
This is just notation for a quantity that appears often, like $n!$:

$$
4!=4 \cdot 3 \cdot 2 \cdot 1 \quad H_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}
$$

$\left\{H_{n}\right\}_{n=1}^{\infty}$ is a new sequence to add to our toolkit, like $\{\ln n\}_{n=1}^{\infty}$ or $\{n!\}_{n=1}^{\infty}$.

STEP 1: How quickly do harmonic sums grow?

Let us call $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. It is called a harmonic sum.
This is just notation for a quantity that appears often, like $n!$:

$$
4!=4 \cdot 3 \cdot 2 \cdot 1 \quad H_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}
$$

$\left\{H_{n}\right\}_{n=1}^{\infty}$ is a new sequence to add to our toolkit, like $\{\ln n\}_{n=1}^{\infty}$ or $\{n!\}_{n=1}^{\infty}$.

You are going to prove
Theorem There exists a convergent sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ such that, for every $n \in \mathbb{N}$

$$
H_{n}=\ln n+c_{n}
$$

STEP 1: The Euler-Mascheroni constant

Let f be a positive, continuous, decreasing function on $[1, \infty)$. Like in the proof of the integral test:

- Sketch the area $A_{n}=\int_{1}^{n} f(x) d x$.
- Draw the lower sum for the partition $\{1,2,3, \ldots, n\}$. Call it L_{n}.
- Let us call $\mu_{n}=A_{n}-L_{n}$. Using the picture, conclude that the sequence $\left\{\mu_{n}\right\}_{n}^{\infty}$ is monotonic and bounded. Therefore it is also...?
- Use the above result on the function $f(x)=\frac{1}{x}$ to prove the following:

Theorem There exists a convergent sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ such that, for every $n \in \mathbb{N}$

$$
H_{n}=\ln n+c_{n}
$$

STEP 1: The Euler-Mascheroni constant

Let f be a positive, continuous, decreasing function on $[1, \infty)$. Like in the proof of the integral test:

- Sketch the area $A_{n}=\int_{1}^{n} f(x) d x$.
- Draw the lower sum for the partition $\{1,2,3, \ldots, n\}$. Call it L_{n}.
- Let us call $\mu_{n}=A_{n}-L_{n}$. Using the picture, conclude that the sequence $\left\{\mu_{n}\right\}_{n}^{\infty}$ is monotonic and bounded. Therefore it is also...?
- Use the above result on the function $f(x)=\frac{1}{x}$ to prove the following:

Theorem There exists a convergent sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ such that, for every $n \in \mathbb{N}$

$$
H_{n}=\ln n+c_{n}
$$

- In particular, this implies that $\lim _{n \rightarrow \infty} \frac{H_{n}}{\ln n}=1$ and that, for large $n, H_{n} \approx \ln n+\gamma$, where $\gamma=\lim _{n \rightarrow \infty} c_{n}$ is a new constant.

