• Today: Absolute and conditional convergence.

• Homework before Tuesday's class: watch videos 13.18, 13.19.

Rapid questions: Convergent or divergent?

Rapid questions: Convergent or divergent?

5.
$$\sum_{n}^{\infty} \frac{1}{n^{1.1}}$$

6.
$$\sum_{n}^{\infty} \frac{1}{n^{0.9}}$$

7.
$$\sum_{n}^{\infty} \frac{n^3 + n^2 + 11}{n^4 + 2n - 3}$$

8.
$$\sum_{n}^{\infty} \frac{\sqrt{n^5 + 2n + 16}}{n^4 - 11n + 7}$$

1. IF $\{a_n\}_{n=1}^{\infty}$ is convergent, THEN $\{|a_n|\}_{n=1}^{\infty}$ is convergent.

2. IF $\{|a_n|\}_{n=1}^{\infty}$ is convergent, THEN $\{a_n\}_{n=1}^{\infty}$ is convergent.

3. IF
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, THEN $\sum_{n=1}^{\infty} |a_n|$ is convergent.
4. IF $\sum_{n=1}^{\infty} |a_n|$ is convergent, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.

Positive and negative terms

- Let $\sum a_n$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call \sum (N.T.) the sum of only the negative terms of the same series.

Positive and negative terms

- Let $\sum a_n$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call \sum (N.T.) the sum of only the negative terms of the same series.

IF \sum (P.T.) is	AND \sum (N.T.) is	THEN $\sum a_n$ may be
CONV	CONV	
∞	CONV	
CONV	$-\infty$	
∞	$-\infty$	

Positive and negative terms

- Let $\sum a_n$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call \sum (N.T.) the sum of only the negative terms of the same series.

Challenge (from previous slides)

We want to calculate the value of

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)\,3^n}$$

Hints:

1. Compute
$$\sum_{n=0}^{\infty} (-1)^n x^{2n}$$

2. Compute $\frac{d}{dx} [\arctan x]$

0

- 3. Pretend you can take derivatives and antiderivatives of series the way you can take them of sums. Which series adds up to arctan x?
- 4. Now attempt the original problem.

Your mission: prove ...

$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \dots$ $= \ln 2$

$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \frac{1}{13} + \frac{1}{15} - \frac{1}{8} + \dots$ $= \frac{3}{2} \ln 2$

STEP 1: How quickly do harmonic sums grow?

Let us call
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
. It is called a *harmonic sum*.

This is just notation for a quantity that appears often, like n!:

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 \qquad \qquad H_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

 $\{H_n\}_{n=1}^{\infty}$ is a new sequence to add to our toolkit, like $\{\ln n\}_{n=1}^{\infty}$ or $\{n!\}_{n=1}^{\infty}$.

STEP 1: How quickly do harmonic sums grow?

Let us call
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
. It is called a *harmonic sum*.

This is just notation for a quantity that appears often, like n!:

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 \qquad \qquad H_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

 $\{H_n\}_{n=1}^{\infty}$ is a new sequence to add to our toolkit, like $\{\ln n\}_{n=1}^{\infty}$ or $\{n!\}_{n=1}^{\infty}$.

You are going to prove

Theorem There exists a convergent sequence $\{c_n\}_{n=1}^{\infty}$ such that, for every $n \in \mathbb{N}$

$$H_n = \ln n + c_n$$

STEP 1: The Euler-Mascheroni constant

Let f be a positive, continuous, decreasing function on $[1, \infty)$. Like in the proof of the integral test:

• Sketch the area
$$A_n = \int_1^n f(x) dx$$
.

- Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- Let us call μ_n = A_n − L_n. Using the picture, conclude that the sequence {μ_n}_n[∞] is monotonic and bounded. Therefore it is also...?
- Use the above result on the function $f(x) = \frac{1}{x}$ to prove the following:

Theorem There exists a convergent sequence $\{c_n\}_{n=1}^{\infty}$ such that, for every $n \in \mathbb{N}$

$$H_n = \ln n + c_n$$

STEP 1: The Euler-Mascheroni constant

Let f be a positive, continuous, decreasing function on $[1, \infty)$. Like in the proof of the integral test:

• Sketch the area
$$A_n = \int_1^n f(x) dx$$
.

- Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- Let us call μ_n = A_n − L_n. Using the picture, conclude that the sequence {μ_n}_n[∞] is monotonic and bounded. Therefore it is also...?
- Use the above result on the function $f(x) = \frac{1}{x}$ to prove the following:

Theorem There exists a convergent sequence $\{c_n\}_{n=1}^{\infty}$ such that, for every $n \in \mathbb{N}$

$$H_n = \ln n + c_n$$

• In particular, this implies that $\lim_{n\to\infty} \frac{H_n}{\ln n} = 1$ and that, for large $n, H_n \approx \ln n + \gamma$, where $\gamma = \lim_{n\to\infty} c_n$ is a new constant.