
MAT137

Today: Absolute and conditional convergence.

Homework before Tuesday’s class: watch videos 13.18,
13.19.
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Rapid questions: Convergent or divergent?

1.
∞∑
n

(1.1)n

2.
∞∑
n

(0.9)n

3.
∞∑
n

(−1)n

ln n

4.
∞∑
n

(−1)n

e1/n

5.
∞∑
n

1

n1.1

6.
∞∑
n

1

n0.9

7.
∞∑
n

n3 + n2 + 11

n4 + 2n − 3

8.
∞∑
n

√
n5 + 2n + 16

n4 − 11n + 7
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True or False – Absolute Values

1. IF {an}∞n=1 is convergent, THEN { |an| }∞n=1 is convergent.

2. IF { |an| }∞n=1 is convergent, THEN {an}∞n=1 is convergent.

3. IF
∞∑
n=1

an is convergent, THEN
∞∑
n=1

|an| is convergent.

4. IF
∞∑
n=1

|an| is convergent, THEN
∞∑
n=1

an is convergent.
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Positive and negative terms

Let
∑

an be a series.

Call
∑

(P.T.) the sum of only the positive terms of the same series.

Call
∑

(N.T.) the sum of only the negative terms of the same series.

IF
∑

(P.T.) is... AND
∑

(N.T.) is... THEN
∑

an may be...

CONV CONV

∞ CONV

CONV −∞

∞ −∞
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Positive and negative terms

Let
∑

an be a series.

Call
∑

(P.T.) the sum of only the positive terms of the same series.

Call
∑

(N.T.) the sum of only the negative terms of the same series.∑
(P.T.) may be...

∑
(N.T.) may be...

In general

If
∑

an is CONV

If
∑
|an| is CONV

If
∑

an is ABS CONV

If
∑

an is COND CONV

If
∑

an =∞

If
∑

an is DIV oscillating
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Challenge (from previous slides)

We want to calculate the value of

∞∑
n=0

(−1)n

(2n + 1) 3n

Hints:

1. Compute
∞∑
n=0

(−1)nx2n

2. Compute
d

dx
[arctan x ]

3. Pretend you can take derivatives and antiderivatives of series the way
you can take them of sums. Which series adds up to arctan x?

4. Now attempt the original problem.
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Your mission: prove ...

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+

1

11
− 1

12
+ . . .

= ln 2

1+
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+

1

13
+

1

15
− 1

8
+ . . .

=
3

2
ln 2
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STEP 1: How quickly do harmonic sums grow?

Let us call Hn =
n∑

k=1

1

k
. It is called a harmonic sum.

This is just notation for a quantity that appears often, like n!:

4! = 4 · 3 · 2 · 1 H4 = 1 +
1

2
+

1

3
+

1

4

{Hn}∞n=1 is a new sequence to add to our toolkit, like {ln n}∞n=1 or {n!}∞n=1.

You are going to prove

Theorem There exists a convergent sequence {cn}∞n=1 such that,
for every n ∈ N

Hn = ln n + cn
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STEP 1: The Euler-Mascheroni constant

Let f be a positive, continuous, decreasing function on [1,∞). Like in the
proof of the integral test:

Sketch the area An =

∫ n

1
f (x)dx .

Draw the lower sum for the partition {1, 2, 3, . . . , n}. Call it Ln.
Let us call µn = An − Ln. Using the picture, conclude that the
sequence {µn}∞n is monotonic and bounded. Therefore it is also...?

Use the above result on the function f (x) =
1

x
to prove the following:

Theorem There exists a convergent sequence {cn}∞n=1 such
that, for every n ∈ N

Hn = ln n + cn

In particular, this implies that lim
n→∞

Hn

ln n
= 1 and that,

for large n, Hn ≈ ln n + γ , where γ = lim
n→∞

cn is a new constant.

Boris Khesin MAT137 March 16, 2023 9 / 9



STEP 1: The Euler-Mascheroni constant

Let f be a positive, continuous, decreasing function on [1,∞). Like in the
proof of the integral test:

Sketch the area An =

∫ n

1
f (x)dx .

Draw the lower sum for the partition {1, 2, 3, . . . , n}. Call it Ln.
Let us call µn = An − Ln. Using the picture, conclude that the
sequence {µn}∞n is monotonic and bounded. Therefore it is also...?

Use the above result on the function f (x) =
1

x
to prove the following:

Theorem There exists a convergent sequence {cn}∞n=1 such
that, for every n ∈ N

Hn = ln n + cn

In particular, this implies that lim
n→∞

Hn

ln n
= 1 and that,

for large n, Hn ≈ ln n + γ , where γ = lim
n→∞

cn is a new constant.

Boris Khesin MAT137 March 16, 2023 9 / 9


