• Today: Integral and comparison tests.

• Homework before Wednesday's class: watch videos 13.13, as well as 13.14.

Rapid questions: For which values of $p \in \mathbb{R}$ are these series convergent?

1.
$$\sum_{n=0}^{\infty} \frac{1}{p^n}$$

2.
$$\sum_{n=0}^{\infty} \frac{1}{n^p}$$

3.
$$\sum_{n=0}^{\infty} p^n$$

4.
$$\sum_{n=0}^{\infty} n^p$$

 \sim

More rapid questions: Convergent or divergent?

1.
$$\sum_{n}^{\infty} \frac{2^{n} - 40}{3^{n} - 20}$$

2.
$$\sum_{n}^{\infty} \frac{(\ln n)^{20}}{n^{2}}$$

3.
$$\sum_{n}^{\infty} \sin^{2} \frac{1}{n}$$

4.
$$\sum_{n}^{\infty} \frac{1}{n(\ln n)^3}$$

5.
$$\sum_{n}^{\infty} \frac{1}{n \ln n}$$

6.
$$\sum_{n}^{\infty} e^{-n^2}$$

We know

•
$$\forall n \in \mathbb{N}, \ 0 < a_n < 1.$$

• the series $\sum_n^{\infty} a_n$ is convergent

Determine whether the following series are convergent, divergent, or we do not have enough information to decide:

