- noitutitedue vd noitergetnl :emit tecl "the Chain Rule"
- "the Product Rule" :straq vd noitargatni vaboT •
- Term test 3: Friday, February 10, 4-6pm.
- Homework before Wednesday's class: watch videos 9.7, as well as 9.8, 9.9.

Computation practice: Integration by parts

Use integration by parts (possibly in combination with other methods) to compute:

1.
$$\int xe^{-2x} dx$$

2. $\int x^2 \sin x \, dx$
3. $\int \ln x \, dx$
4. $\int x \arctan x \, dx$
5. $\int \sin \sqrt{x} \, dx$
6. $\int x^2 \arcsin x \, dx$
7. $\int e^{\cos x} \sin^3 x \, dx$
8. $\int e^{ax} \sin(bx) dx$

Persistence

Compute

•
$$\int_{1}^{e} \left(\ln x\right)^{4} dx$$

Persistence

Compute

•
$$\int_{1}^{e} \left(\ln x \right)^{4} dx$$

• $\int_{1}^{e} \left(\ln x \right)^{10} dx$

Compute

•
$$\int_{1}^{e} (\ln x)^{4} dx$$
 • $\int_{1}^{e} (\ln x)^{10} dx$

There is a more efficient approach. Call

$$I_n = \int_1^e \left(\ln x\right)^n dx$$

Use integration by parts on I_n . You will get an equation with I_n and I_{n-1} . Now solve the previous questions.

The error function

The following function is tabulated.

$$E(x)=\int_0^x e^{-t^2}dt.$$

The error function

The following function is tabulated.

$$E(x)=\int_0^x e^{-t^2}dt.$$

Write the following quantities in terms of E:

1.
$$\int_{1}^{2} e^{-t^{2}} dt$$

2. $\int_{0}^{x} t^{2} e^{-t^{2}} dt$
3. $\int_{0}^{x} e^{-2t^{2}} dt$

The error function

The following function is tabulated.

$$E(x)=\int_0^x e^{-t^2}dt.$$

Write the following quantities in terms of E:

1.
$$\int_{1}^{2} e^{-t^{2}} dt$$

2. $\int_{0}^{x} t^{2} e^{-t^{2}} dt$
3. $\int_{0}^{x} e^{-2t^{2}} dt$
4. $\int_{0}^{1} e^{-t^{2}+6t} dt$
5. $\int_{x_{1}}^{x_{2}} e^{-\frac{(t-\mu)^{2}}{\sigma^{2}}} dt$
6. $\int_{0}^{x} \frac{e^{-t}}{\sqrt{t}} dt$