MAT137

- Last time: Integration by substitution: "وluЯ nign) 9 かf"
- Today: Integration by parts: "эlıЯ fэubor 9 элง"
- Term test 3: Friday, February 10, 4-6pm.
- Homework before Wednesday's class: watch videos 9.7, as well as 9.8, 9.9.

Computation practice: Integration by parts

Use integration by parts (possibly in combination with other methods) to compute:

1. $\int x e^{-2 x} d x$ 5. $\int \sin \sqrt{x} d x$
2. $\int x^{2} \sin x d x$
3. $\int x^{2} \arcsin x d x$
4. $\int \ln x d x$
5. $\int e^{\cos x} \sin ^{3} x d x$
6. $\int x \arctan x d x$
7. $\int e^{a x} \sin (b x) d x$

Persistence

Compute

- $\int_{1}^{e}(\ln x)^{4} d x$

Persistence

Compute

- $\int_{1}^{e}(\ln x)^{4} d x$
- $\int_{1}^{e}(\ln x)^{10} d x$

Persistence

Compute

$$
\int_{1}^{e}(\ln x)^{4} d x \quad \cdot \int_{1}^{e}(\ln x)^{10} d x
$$

There is a more efficient approach. Call

$$
I_{n}=\int_{1}^{e}(\ln x)^{n} d x
$$

Use integration by parts on I_{n}. You will get an equation with I_{n} and I_{n-1}. Now solve the previous questions.

The error function

The following function is tabulated.

$$
E(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

The error function

The following function is tabulated.

$$
E(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

Write the following quantities in terms of E :

1. $\int_{1}^{2} e^{-t^{2}} d t$
2. $\int_{0}^{x} t^{2} e^{-t^{2}} d t$
3. $\int_{0}^{x} e^{-2 t^{2}} d t$

The error function

The following function is tabulated.

$$
E(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

Write the following quantities in terms of E :

1. $\int_{1}^{2} e^{-t^{2}} d t$
2. $\int_{0}^{1} e^{-t^{2}+6 t} d t$
3. $\int_{0}^{x} t^{2} e^{-t^{2}} d t$
4. $\int_{x_{1}}^{x_{2}} e^{-\frac{(t-\mu)^{2}}{\sigma^{2}}} d t$
5. $\int_{0}^{x} e^{-2 t^{2}} d t$
6. $\int_{0}^{x} \frac{e^{-t}}{\sqrt{t}} d t$
