Last time: Integration by substitution: "the Chain Rule"

Today: Integration by parts: "the Product Rule"

Term test 3: Thursday, February 7th, 6:10-8pm.

Homework before Wednesday’s class: watch videos 9.10, 9.11, 9.12.
Use integration by parts (possibly in combination with other methods) to compute:

1. \(\int xe^{-2x} \, dx \)
2. \(\int x^2 \sin x \, dx \)
3. \(\int \ln x \, dx \)
4. \(\int x \arctan x \, dx \)
5. \(\int \sin \sqrt{x} \, dx \)
6. \(\int x^2 \arcsin x \, dx \)
7. \(\int e^{\cos x} \sin^3 x \, dx \)
8. \(\int e^{ax} \sin(bx) \, dx \)
Compute

\[\int_1^e (\ln x)^4 \, dx \]
Compute

\[\int_1^e (\ln x)^4 \, dx \quad \text{and} \quad \int_1^e (\ln x)^{10} \, dx \]
Compute

\[\int_1^e (\ln x)^4 \, dx \quad \text{and} \quad \int_1^e (\ln x)^{10} \, dx \]

There is a more efficient approach. Call

\[I_n = \int_1^e (\ln x)^n \, dx \]

Use integration by parts on \(I_n \). You will get an equation with \(I_n \) and \(I_{n-1} \). Now solve the previous questions.
The error function

The following function is tabulated.

\[E(x) = \int_0^x e^{-t^2} dt. \]
The error function

The following function is tabulated.

\[E(x) = \int_{0}^{x} e^{-t^2} dt. \]

Write the following quantities in terms of \(E \):

1. \[\int_{1}^{2} e^{-t^2} dt \]
2. \[\int_{0}^{x} t^2 e^{-t^2} dt \]
3. \[\int_{0}^{x} e^{-2t^2} dt \]
The error function

The following function is tabulated.

\[E(x) = \int_0^x e^{-t^2} \, dt. \]

Write the following quantities in terms of \(E \):

1. \(\int_1^2 e^{-t^2} \, dt \)
2. \(\int_0^x t^2 e^{-t^2} \, dt \)
3. \(\int_0^x e^{-2t^2} \, dt \)
4. \(\int_0^1 e^{-t^2+6t} \, dt \)
5. \(\int_{x_1}^{x_2} e^{-\frac{(t-\mu)^2}{\sigma^2}} \, dt \)
6. \(\int_0^x \frac{e^{-t}}{\sqrt{t}} \, dt \)