MAT137

- Today: Integration by substitution.
- Homework before Tuesday's class: watch video 9.4, as well as 9.5, 9.6.

Warm up

Calculate

$$
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x
$$

Hint: Use the substitution $u=\sqrt{x}$.

Computation practice: integration by substitution

Use substitutions to compute:

1. $\int e^{x} \cos \left(e^{x}\right) d x$ 5. $\int \frac{(\ln \ln x)^{2}}{x \ln x} d x$
2. $\int \cot x d x$
3. $\int x^{2} \sqrt{x+1} d x$

$$
\text { 6. } \int x e^{-x^{2}} d x
$$

4. $\int \frac{e^{2 x}}{\sqrt{e^{x}+1}} d x$

$$
\text { 7. } \int e^{-x^{2}} d x
$$

Definite integral via substitution

This final answer is right, but the write-up is WRONG. Why?
Calculate $I=\int_{0}^{2} \sqrt{x^{3}+1} x^{2} d x$

Wrong answer

Substitution: $u=x^{3}+1, d u=3 x^{2} d x$.

$$
\begin{aligned}
I & =\frac{1}{3} \int_{0}^{2} \sqrt{x^{3}+1}\left(3 x^{2} d x\right) & & =\frac{1}{3} \int_{0}^{2} u^{1 / 2} d u \\
& =\left.\frac{1}{3} \frac{2}{3} u^{3 / 2}\right|_{0} ^{2} & & =\left.\frac{1}{9}\left(x^{3}+1\right)^{2 / 3}\right|_{0} ^{2} \\
& =\frac{2}{9}\left(2^{3}+1\right)^{3 / 2}-\frac{2}{9}(0+1)^{3 / 2} & & =\frac{52}{9}
\end{aligned}
$$

Definite integral via substitution

Calculate $I=\int_{0}^{2} \sqrt{x^{3}+1} x^{2} d x$

Correct answer \#1

Substitution:

$$
\begin{array}{rlrl}
u & =x^{3}+1 & \text { When } x=0, u=1 \\
d u & =3 x^{2} d x & \text { When } x=2, u=9 \\
I & =\frac{1}{3} \int_{0}^{2} \sqrt{x^{3}+1}\left(3 x^{2} d x\right) \\
& =\frac{1}{3} \int_{1}^{9} u^{1 / 2} d u \\
& =\left.\frac{2}{9} u^{3 / 2}\right|_{1} ^{9}=\frac{2}{9} 9^{3 / 2}-\frac{2}{9} 1^{3 / 2}=\frac{52}{9}
\end{array}
$$

Definite integral via substitution

Calculate $I=\int_{0}^{2} \sqrt{x^{3}+1} x^{2} d x$

Correct answer \#2

Substitution:

- First find an antiderivative. Substitution: $u=x^{3}+1, d u=3 x^{2} d x$.

$$
\int \sqrt{x^{3}+1} d x=\frac{1}{3} \int u^{1 / 2} d u=\frac{2}{9} u^{3 / 2}+C=\frac{2}{9}\left(x^{3}+1\right)^{3 / 2}+C
$$

- Then use FTC.

$$
\begin{aligned}
\int_{0}^{2} \sqrt{x^{3}+1} d x & =\left.\frac{2}{9}\left(x^{3}+1\right)^{3 / 2}\right|_{0} ^{2} \\
& =\frac{2}{9}\left(2^{3}+1\right)^{3 / 2}-\frac{2}{9}(0+1)^{3 / 2}=\frac{52}{9}
\end{aligned}
$$

A different kind of substitution

Calculate

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

using the substitution $x=\sin \theta$.

Odd functions

Theorem

Let f be a continuous function. Let $a>0$. IF f is odd, THEN

$$
\int_{-a}^{a} f(x) d x=? ? ?
$$

1. Draw a picture to interpret the theorem geometrically.
2. Write down the definition of "odd function".
3. Prove the theorem!

Hint: Write the integral as sum of two pieces. Use a substitution in one of them to show that they cancel with each other.

