## MAT137

- Today: FTC Part 1.
- Homework before Wednesday's class: watch videos 8.5, 8.6.
- Test 3 will take place on Friday, February 10, 4-6pm, see details on Quercus.


## True, False, or Shrug?

We want to find a function $H$ with domain $\mathbb{R}$ such that $H(1)=-2$ and such that $H^{\prime}(x)=e^{\sin x}$ for all $x$. Decide whether each of the following statements is true, false, or we do not have enough information to decide.

1. $\forall C \in \mathbb{R}$, the function $\quad H(x)=\int_{0}^{x} e^{\sin t} d t+C \quad$ is a solution.
2. $\exists C \in \mathbb{R}$ s.t. the function $\quad H(x)=\int_{0}^{x} e^{\sin t} d t+C \quad$ is a solution.
3. The function $H(x)=\int_{0}^{x} e^{\sin t} d t \quad$ is a solution.
4. The function $\quad H(x)=\int_{1}^{x} e^{\sin t} d t-2 \quad$ is a solution.
5. There is more than one solution.
6. The function $H(x)=\int_{2}^{x} e^{\sin t} d t \quad$ is a solution.

## Examples of FTC-1

Compute the derivative of the following functions

1. $F_{1}(x)=\int_{0}^{1} e^{-t^{2}} d t . \quad$ 4. $F_{4}(x)=\int_{x}^{7} \sin ^{3}(\sqrt{t}) d t$.
2. $F_{2}(x)=\int_{0}^{x} e^{-\sin t} d t$.
3. $F_{3}(x)=\int_{1}^{x^{2}} \frac{\sin t}{t^{2}} d t$.

$$
\text { 5. } F_{5}(x)=\int_{2 x}^{x^{2}} \frac{1}{1+t^{3}} d t \text {. }
$$

## A generalized version of FTC-1

## Exercise

Let $f, u, v$ be differentiable functions with domain $\mathbb{R}$. Let us call

$$
F(x)=\int_{u(x)}^{v(x)} f(t) d t
$$

Find a formula for

$$
F^{\prime}(x)
$$

in terms of $f, u, v, f^{\prime}, u^{\prime}, v^{\prime}$.

## An integral equation

Assume $f$ is a continuous function that satisfies, for every $x \in \mathbb{R}$ :

$$
\int_{0}^{x} e^{t} f(t) d t=\frac{\sin x}{x^{2}+1}
$$

Find an explicit expression for $f(x)$.

## An application of FTC-1

Use FTC-1 to prove that, for every $x>0$

$$
\int_{0}^{x} \frac{d t}{1+t^{2}}+\int_{0}^{1 / x} \frac{d t}{1+t^{2}}=\frac{\pi}{2}
$$

What happens for $x<0$ ?

