MAT137

- Today: Antiderivatives and indefinite integrals.
- Homework before Tuesday's class: watch videos 8.3, 8.4.
- Test 3 will take place on Friday, February 10, 4-6pm, see details on Quercus.

Properties of the integral

Assume we know the following

$$
\int_{0}^{2} f(x) d x=3, \quad \int_{0}^{4} f(x) d x=9, \quad \int_{0}^{4} g(x) d x=2
$$

Compute:
$\begin{array}{ll}\text { 1. } \int_{0}^{2} f(t) d t=3 & \text { 4. } \int_{2}^{4} f(x) d x=\int_{0}^{4}-\int_{0}^{2}=9-3=t \\ \text { 2. } \int_{0}^{2} f(t) d x=2 f(t) & \text { 5. } \int_{-2}^{0} f(x) d x \text { ? } \\ \text { 3. } \int_{2}^{0} f(x) d x=-\int_{0}^{2} f(x) d x & \text { 6. } \int_{0}^{4}[f(x)-2 g(x)] d x\end{array}$

Initial Value Problem

Find a function f such that

- For every $x \in \mathbb{R}, f^{\prime \prime}(x)=\sin x+x^{2}$,
- $f^{\prime}(0)=5$,
- $f(0)=7$.
$f^{\prime}(x)=-\cos x+\frac{x^{3}}{3}+C$
$f^{\prime}(0)=5 \quad-\cos 0+\frac{0^{3}}{3}+c=5$

$$
\begin{aligned}
& -1+0+c=5 \quad \Rightarrow \quad c=6 \\
\Rightarrow & f^{\prime}(x)=-\cos x+\frac{x^{3}}{3}+6
\end{aligned}
$$

Then $f(x)=-\sin x+\frac{x^{4}}{4 \cdot 3}+6 x+B$

$$
\begin{aligned}
& f(0)=7 \Rightarrow-\sin 0+\frac{0^{4}}{12}+6 \cdot 0+B=7 \\
& \Rightarrow B=7 \Rightarrow f(x)=-\sin x+\frac{x 4}{12}+6 x+7
\end{aligned}
$$

Functions defined by integrals

Which ones of these are valid ways to define functions?

V 1. $F(x)=\int_{0}^{x} \frac{t}{1+t^{8}} d t$
Vt. $F(x)=\int_{\sin x}^{e^{x}} \frac{t}{1+t^{8}} d t$
V 6. $F(x)=\int_{0}^{3} \frac{t}{1+x^{2}+t^{8}} d t$
V 3. $F(x)=\int_{0}^{x} \frac{x}{1+t^{8}} d t$
VT. $F(x)=x \int_{\sin x}^{e^{x}} \frac{t}{1+x^{2}+t^{8}} d t$
V 4. $F(x)=\int_{0}^{x^{2}} \frac{t}{1+t^{8}} d t$

$$
\text { X 8. } F(x)=t \int_{\sin x}^{e^{x}} \frac{t}{1+x^{2}+t^{8}} d t
$$

Towards FTC

Compute:

1. $\int_{0}^{1} f(t) d t=\frac{1}{2}$
2. $\int_{0}^{2} f(t) d t=\left(\frac{1}{2}\right.$
3. $\int_{0}^{3} f(t) d t=2$
4. $\int_{0}^{4} f(t) d t=1 \frac{1}{2}$
5. $\int_{0}^{5} f(t) d t=\frac{1}{2}$

Towards FTC (continued)

Call $F(x)=\int_{0}^{x} f(t) d t$. This is a new function.

- Sketch the graph of $y=F(x)$.
- Using the graph you just sketched, sketch the graph of $y=F^{\prime}(x)$.

Nole: $F(0)=0$

$$
F^{\prime}(x)=f(x)
$$

Antiderivatives

Compute these antiderivatives by guess-and-check.
\checkmark 1. $\int x^{5} d x=\frac{x^{6}}{6}+C$

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C
$$

2. $\int\left(3 x^{8}-18 x^{5}+x+1\right) d x$
3. $\int \cos (3 x+2) d x$
$n \neq-1$
4. $\int \sin (3 x) d x$
$n \in \mathbb{R}$
5. $\int \sqrt[3]{x} d x$
6. $\int \sec ^{2} x d x$
7. $\int \frac{1}{x^{9}} d x$
\checkmark 10. $\int \sec x \tan x d x$
8. $\int \sqrt{x}\left(x^{2}+5\right) d x$
9. $\int \frac{1}{x} d x$
10. $\int \frac{1}{e^{2 x}} d x \int\left(x^{2,5}+5 x\right)^{0,5} d x$ 12. $\int \frac{1}{x+3} d x$
11. $\int \frac{d x}{\cos ^{2} x}=\tan x+c \quad \forall c \in \mathbb{R}$

$$
\begin{aligned}
& \text { 10. } \int \sec x \tan x d x=\int \frac{\sin x}{\cos ^{2} x} d x=-\int \frac{d(\cos x)}{\cos ^{2} x} \\
& =-\int \frac{d t}{t^{2}}=\frac{1}{t}+C=\frac{1}{\cos x}+C
\end{aligned}
$$

Check $\left(\frac{1}{\cos x}\right)^{\prime}=\frac{\sin x}{\cos ^{2} x}$

$$
d(\cos x)=\left(\cos ^{\prime \prime} x\right)^{\prime} d x
$$

Trig-exp antiderivatives

1. Calculate

$$
\frac{d}{d x}\left[e^{x} \sin x\right], \quad \frac{d}{d x}\left[e^{x} \cos x\right]
$$

2. Use the previous answer to calculate

$$
\int e^{x} \sin x d x, \quad \int e^{x} \cos x d x
$$

$$
\begin{aligned}
& \left(e^{x} \sin x\right)^{\prime}=e^{x} \sin x+e^{x} \cos x \\
& \pm\left(e^{x} \cos x\right)^{\prime}=-e^{x} \sin x e^{x} \cos x \\
& \left(e^{x}(\sin x+\cos x)\right)^{\prime}=2 e^{x} \cos x \\
& \int e^{x} \cos x d x=\frac{1}{2} e^{x}(\sin x+\cos x)+C \\
& \left(e^{x}(\sin x-\cos x)\right)^{\prime \prime}=2 e^{x} \sin x \\
& \int e^{x} \sin x d x=\frac{1}{2} e^{x}(\sin x-\cos x)+C
\end{aligned}
$$

A harder antiderivative

1. Calculate

$$
\frac{d}{d x}[\arctan x], \quad \frac{d}{d x}\left[\frac{x}{1+x^{2}}\right]
$$

2. Use the previous answer to calculate

$$
\int \frac{1}{\left(1+x^{2}\right)^{2}} d x
$$

