MAT137

- Today: Integral as limits.
- Homework before Thursday's class: watch videos 8.1, 8.2.

The " ε-characterization" of integrability

True or False?

Let f be a bounded function on $[a, b]$.

1. IF f is integrable on $[a, b]$

THEN $\quad \forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon "$.
2. IF " $\forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$ ", THEN f is integrable on $[a, b]$

The " ε-characterization" of integrability - First proof

You are going to prove

Claim

Let f be a bounded function on $[a, b]$.

- IF f is integrable on $[a, b]$
- THEN " $\forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$ ".

1. Recall the definition of " f is integrable on $[a, b]$ ".
2. Write down the structure of the proof.
3. Fix $\varepsilon>0$. Show there is a partition P s.t. $U_{P}(f)<\overline{I_{a}^{b}}(f)+\frac{\varepsilon}{2}$. Why?
4. Assume f is integrable on $[a, b]$. Fix $\varepsilon>0$. Show there are partitions P_{1} and P_{2} s.t. $U_{P_{1}}(f)-L_{P_{2}}(f)<\varepsilon$.
5. Using P_{1} and P_{2} from the previous step, construct a partition P such that $U_{P}(f)-L_{P}(f)<\varepsilon$.
6. Write down a proof for the claim.

PP

f isinteg $\Leftrightarrow I=I=I$
$f \times \forall \varepsilon>0 \quad \bar{I}=\inf _{p} U_{p} \Rightarrow \exists P_{1}$ sot.

$$
\bar{I} \leqslant U_{P_{1}}^{P}<\bar{I}+\frac{\varepsilon}{2}
$$

similarly, $I=\sup _{P} L_{p} \Rightarrow \exists P_{2}$ st.

$$
I-\frac{\varepsilon}{2}<L_{P_{2}} \leq I
$$

Set $P=P_{1} \cup P_{2}<$ finer than both P_{1} and P_{2}

$$
\begin{aligned}
& \frac{I}{I^{11}}-\frac{\varepsilon}{2}<L_{P_{2}} \leqslant L_{p} \leqslant U_{P} \leqslant U_{P_{1}}<\frac{\bar{I}}{\frac{I}{I}}+\frac{\varepsilon}{2} \\
& \Rightarrow \quad U_{p}-L_{p}<\varepsilon \\
& \overbrace{I-\frac{\varepsilon}{2} L_{p}^{\prime} I^{\prime} U_{p}}^{1}+\frac{I+\frac{\varepsilon}{2}}{\varepsilon}
\end{aligned}
$$

The " ε-characterization" of integrability - Second proof

You are going to prove

Claim

Let f be a bounded function on $[a, b]$.

- IF
$" \forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$ ".
- THEN f is integrable on $[a, b]$

1. Recall the definition of " f is integrable on $[a, b]$ ".
2. For any partition P, order the quantities $U_{P}(f), L_{P}(f), \overline{I_{a}^{b}}(f), \underline{l_{a}^{b}}(f)$.
3. For any partition P, order the quantities $U_{P}(f)-L_{P}(f)$, $\overline{I_{a}^{b}}(f)-\underline{l_{a}^{b}}(f)$, and 0 .
4. Write down a proof for the claim.

Prketch $\forall P \quad L_{p} \leqslant I \leq I \leq U_{p}$
$\forall \varepsilon>0 \quad \exists P$ s.t.

$$
0 \leq I-I \leq U_{p}-L_{p}<\varepsilon \Rightarrow \bar{J}=I
$$

$\Rightarrow f$ is integ,

The norm of a partition

$$
\|P\|=\max _{i} \| \Delta X_{i}
$$

1. Construct a partition P of $[1,2]$ such that $\|P\|=\frac{5}{\pi}$.
2. Construct a partition P of $[1,2]$ sud
3. Construct a sequence of partitions

$$
P_{1}, P_{2}, P_{3}, \ldots
$$

of $[1,2]$, as simple as possible, such that $\lim _{n \rightarrow \infty}\left\|P_{n}\right\|=0$.
3. Construct a different sequence of partitions

$$
Q_{1}, Q_{2}, Q_{3}, \ldots
$$

of $[1,2]$, such that $\lim _{n \rightarrow \infty}\left\|Q_{n}\right\|=0$.
2)

$$
\begin{aligned}
& P_{n}=\left\{\left.1+\frac{i}{n} \right\rvert\, i=0, \ldots, n\right\} \\
& \|\left.11+\frac{1}{n}, 1+\frac{2}{n}, \ldots, 1+\frac{n}{n}\right\} \\
&\left\{1,1{ }^{\prime \prime} 2\right. \\
&\left\|P_{n}\right\|=\frac{1}{n}, \lim _{n \rightarrow \infty}\left\|P_{n}\right\|=\lim _{n \rightarrow \infty} \frac{1}{n}=0
\end{aligned}
$$

3)

$$
\begin{aligned}
& Q_{n}=P_{n} \cup\left\{\frac{\pi}{e}\right\} \\
& \left.Q_{n}=\left\{1+\frac{i}{2^{n}}\right\} i=0, \ldots, 2^{n}\right\}
\end{aligned}
$$

$$
\underbrace{3 / 4}_{P=\left\{1,1 \frac{3}{4}, 2\right\}} \left\lvert\,\left(P \left\lvert\,\left(=\max \left\{\frac{1}{4}, \frac{3}{4}\right\}=\frac{3}{4}\right.\right.\right.\right.
$$

Find P sit. $\|P\|=\frac{3}{100}$
Take $P=\{1,1.03,1.06, \ldots, 1.99,2\}$

Riemann sums example

Imitate the calculation in Video 7.11.

Exercise

Let $f(x)=x^{2}$ on $[0,1]$.
Let $P_{n}=\{$ breaking the interval into n equal pieces $\}$.

1. Write a explicit formula for P_{n}.
2. What is Δx_{i} ?
3. Write $S_{P_{n}}^{*}(f)$ as a sum when we choose x_{i}^{*} as the right end-point.
4. Add the sum
5. Compute $\lim _{n \rightarrow \infty} S_{P_{n}}^{*}(f)$.
6. Repeat the last 3 questions when we choose x_{i}^{*} as the left end-point.

Helpful formulas: $\quad \sum_{i=1}^{N} i=\frac{N(N+1)}{2}, \quad \sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}$

$$
\begin{gathered}
S_{P_{n}^{*}}^{*}(f)=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} \\
P_{n}=\left\{\frac{k}{n}, k=0, \ldots, n\right\} \\
\longrightarrow_{x}\left|\Delta x_{k}\right|=\frac{1}{n}
\end{gathered}
$$

$$
S_{P_{n}}^{*}(f)=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}=\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2} \cdot \frac{1}{n}
$$

$\left(\frac{i}{n}\right)^{2} \quad \frac{1}{n}$

$$
\begin{aligned}
& =\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6 \cdot n^{3}} \approx \frac{2 n^{3}}{6 n^{3}}=\frac{1}{3} \\
& \int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} \\
& \tilde{S}_{p_{n}}^{x}(f)=\sum_{i=1}^{n}\left(\frac{i-1}{n}\right)^{2} \cdot \frac{1}{n} \\
& =\frac{1}{n^{3}} \sum_{i=1}^{n}\left(i^{2}-2 i+1\right) \underset{n \rightarrow \infty}{6}=\frac{2}{3}
\end{aligned}
$$

