• Examples and properties of the integral.

• Homework before Wednesday's class: watch videos 7.9, 7.10.

Lower sums, upper sums, and integrability: illustration

finer partitions

finer partitions

Consider the function f(x) = 2 on [0, 4].

- 1. Given $P = \{0, 1, e, \pi, 4\}$, compute $L_P(f)$ and $U_P(f)$.
- 2. Explicitly compute *all* the upper sums and *all* the lower sums.
- 3. Compute $I_0^4(f)$
- 4. Compute $\overline{I_0^4}(f)$
- 5. Is f integrable on [0, 4]?

Consider the function $f(x) = \begin{cases} 0 & x = 0 \\ 5 & 0 < x \le 1 \end{cases}$, defined on [0, 1].

- 1. Let $P = \{0, 0.2, 0.5, 0.9, 1\}$. Calculate $L_P(f)$ and $U_P(f)$ for this partition.
- 2. Fix an arbitrary partition $P = \{x_0, x_1, \dots, x_N\}$ of [0, 1]. What is $U_P(f)$? What is $L_P(f)$? (Draw a picture!)
- 3. Find a partition P such that $L_P(f) = 4.99$.
- 4. What is the upper integral, $\overline{I_0^1}(f)$?
- 5. What is the lower integral, $I_0^1(f)$?
- 6. Is f integrable on [0, 1]?

Example 3: a very non-continuous function

Consider the function defined on [0, 1]:

$$f(x) = \begin{cases} 1/2 & \text{if } 0 \le x \le 1/2 \\ 1 & \text{if } 1/2 < x \le 1 \text{ and } x \in \mathbb{Q} \\ 0 & \text{if } 1/2 < x \le 1 \text{ and } x \notin \mathbb{Q} \end{cases}$$

- 1. Draw a picture!
- 2. Let $P = \{0, 0.2, 0.4, 0.6, 0.8, 1\}$. Calculate $L_P(f)$ and $U_P(f)$.
- 3. Construct a partition P such that $L_P(f) = \frac{1}{4}$ and $U_P(f) = \frac{3}{4}$
- 4. What is the upper integral, $\overline{I_0^1}(f)$?
- 5. What is the lower integral, $I_0^1(f)$?
- 6. Is f integrable on [0, 1]?

Find bounded functions f and g on [0, 1] such that

- f is not integrable on [0, 1],
- g is not integrable on [0, 1],
- f + g is integrable on [0, 1].

or prove this is impossible.

Properties of the integral

Assume we know the following

$$\int_0^2 f(x) dx = 3, \quad \int_0^4 f(x) dx = 9, \quad \int_0^4 g(x) dx = 2.$$

Compute:

1.
$$\int_{0}^{2} f(t) dt$$

2.
$$\int_{0}^{2} f(t) dx$$

3.
$$\int_{2}^{0} f(x) dx$$

4.
$$\int_{2}^{4} f(x) dx$$

5. $\int_{-2}^{0} f(x) dx$
6. $\int_{0}^{4} [f(x) - 2g(x)] dx$