MAT137

- Examples and properties of the integral.
- Homework before Wednesday's class: watch videos 7.9, 7.10.

Lower sums, upper sums, and integrability: illustration

Example 1: a constant function

Consider the function $f(x)=2$ on $[0,4]$.

1. Given $P=\{0,1, e, \pi, 4\}$, compute $L_{P}(f)$ and $U_{P}(f)$.
2. Explicitly compute all the upper sums and all the lower sums.
3. Compute $\underline{I_{0}^{4}}(f)$
4. Compute $\overline{I_{0}^{4}}(f)$
5. Is f integrable on $[0,4]$?

Example 2: a non-continuous function

Consider the function $f(x)=\left\{\begin{array}{ll}0 & x=0 \\ 5 & 0<x \leq 1\end{array}\right.$, defined on $[0,1]$.

1. Let $P=\{0,0.2,0.5,0.9,1\}$.

Calculate $L_{P}(f)$ and $U_{P}(f)$ for this partition.
2. Fix an arbitrary partition $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ of $[0,1]$.

What is $U_{P}(f)$? What is $L_{P}(f)$? (Draw a picture!)
3. Find a partition P such that $L_{P}(f)=4.99$.
4. What is the upper integral, $\overline{\Gamma_{0}^{1}}(f)$?
5. What is the lower integral, $\underline{I_{0}^{1}}(f)$?

6 . Is f integrable on $[0,1]$?

Example 3: a very non-continuous function

Consider the function defined on $[0,1]$:

$$
f(x)= \begin{cases}1 / 2 & \text { if } 0 \leq x \leq 1 / 2 \\ 1 & \text { if } 1 / 2<x \leq 1 \text { and } x \in \mathbb{Q} \\ 0 & \text { if } 1 / 2<x \leq 1 \text { and } x \notin \mathbb{Q}\end{cases}
$$

1. Draw a picture!
2. Let $P=\{0,0.2,0.4,0.6,0.8,1\}$. Calculate $L_{P}(f)$ and $U_{P}(f)$.
3. Construct a partition P such that $L_{P}(f)=\frac{1}{4}$ and $U_{P}(f)=\frac{3}{4}$
4. What is the upper integral, $\overline{I_{0}^{1}}(f)$?
5. What is the lower integral, $\underline{I_{0}^{1}}(f)$?

6 . Is f integrable on $[0,1]$?

Is this possible?

Find bounded functions f and g on $[0,1]$ such that

- f is not integrable on $[0,1]$,
- g is not integrable on $[0,1]$,
- $f+g$ is integrable on $[0,1]$. or prove this is impossible.

Properties of the integral

Assume we know the following

$$
\int_{0}^{2} f(x) d x=3, \quad \int_{0}^{4} f(x) d x=9, \quad \int_{0}^{4} g(x) d x=2
$$

Compute:

1. $\int_{0}^{2} f(t) d t$
2. $\int_{2}^{4} f(x) d x$
3. $\int_{0}^{2} f(t) d x$
4. $\int_{2}^{0} f(x) d x$
5. $\int_{-2}^{0} f(x) d x$
6. $\int_{0}^{4}[f(x)-2 g(x)] d x$
