Today: Suprema and infima.

Homework before Thursday’s class: watch videos 7.5, 7.6.
Warm up: suprema and infima

Find the supremum, infimum, maximum, and minimum of the following sets (if they exist):

1. \(A = [-1, 5) \)
2. \(B = (-\infty, 0) \cup (3, \infty) \)
3. \(C = \{2, 3, 4\} \)
4. \(D = \left\{ \frac{1}{n} : n \in \mathbb{Z}, n > 0 \right\} \)
5. \(E = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{Z}, n > 0 \right\} \)
6. \(F = \{2^n : n \in \mathbb{Z}\} \)
Empty set

1. Does \emptyset have an upper bound?
2. Does \emptyset have a supremum?
3. Does \emptyset have a maximum?
4. Is \emptyset bounded above?

Recall:
Let $A \subseteq \mathbb{R}$. Let $a \in \mathbb{R}$.

- a is an upper bound of A means $\forall x \in A$, $x \leq a$.
- a is the least upper bound (lub) or supremum (sup) of A means a is an upper bound of A, and there are no smaller upper bounds.
Empty set

1. Does \emptyset have an upper bound?
2. Does \emptyset have a supremum?
3. Does \emptyset have a maximum?
4. Is \emptyset bounded above?

Recall:

Let $A \subseteq \mathbb{R}$. Let $a \in \mathbb{R}$.

- a is an **upper bound** of A means $\forall x \in A, x \leq a$.
- a is the **least upper bound** (lub) or **supremum** (sup) of A means
 - a is an upper bound of A, and
 - there are no smaller upper bounds.
Assume S is an upper bound of the set A.
Which one (or ones) of the following statements is equivalent to “S is the supremum of A”?

1. If R is an upper bound of A, then $S \leq R$.
2. $\forall R \geq S$, R is an upper bound of A.
3. $\forall R \leq S$, R is not an upper bound of A.
4. $\forall R < S$, R is not an upper bound of A.
5. $\forall R < S$, $\exists x \in A$ such that $R < x$.
6. $\forall R < S$, $\exists x \in A$ such that $R \leq x$.
7. $\forall R < S$, $\exists x \in A$ such that $R < x \leq S$.
8. $\forall R < S$, $\exists x \in A$ such that $R < x < S$.
9. $\forall \varepsilon > 0$, $\exists x \in A$ such that $S - \varepsilon < x \leq S$.
Infima and suprema exercises

Let $A, B \subseteq \mathbb{R}$. Which of the following are true or false?

If false, find a counterexample.

1. If $B \subseteq A$ and A is bounded above, then B is bounded above.
2. If $B \subseteq A$ and B is bounded above, then A is bounded above.
3. If $B \subseteq A$ and A is bounded above, then $\sup B \leq \sup A$.
4. If $B \subseteq A$ and A is bounded above, then $\inf B \leq \inf A$.
5. If A and B are bounded above and $\sup A \leq \sup B$, then $A \subseteq B$.
6. If A and B are bounded above, then $\sup(A \cup B) = \max\{\sup A, \sup B\}$.
7. If A and B are bounded above, then $\sup(A \cap B) = \min\{\sup A, \sup B\}$.
Let $f(x) = x^3 - 3x$.

Find four open intervals I_1, I_2, I_3, I_4 such that

1. f has a maximum and a minimum on I_1.
2. f has a supremum and no maximum on I_2.
3. f has a supremum and no infimum on I_3.
4. f does not have a supremum or an infimum on I_4.
Fix these FALSE statements

1. Let f and g be bounded functions on $[a, b]$. Then

$$\sup_{[a, b]} (f + g) = \sup_{[a, b]} f + \sup_{[a, b]} g$$

2. Let $a < b < c$. Let f be a bounded function on $[a, c]$. Then

$$\sup_{[a, c]} f = \sup_{[a, b]} f + \sup_{[b, c]} f$$

3. Let f be a bounded function on $[a, b]$. Let $c \in \mathbb{R}$. Then:

$$\sup_{[a, b]} (cf) = c \left(\sup_{[a, b]} f \right)$$