MAT137

- Today: Integrable functions.
- Homework before Tuesday's class: watch videos 7.7, 7.8, 7.11.

Warm up: partitions

Which ones are partitions of $[0,2]$?

1. $[0,2]$
2. $(0,2)$
3. $\{0,2\}$
4. $\{1,2\}$
5. $\{0,1.5,1.6,1.7,1.8,1.9,2\}$

Partitions of different intervals

1. Let P be a partition of $[0,1]$.

Let Q be a partition of $[1,2]$. How do we construct a partition of $[0,2]$ from them?
2. Let R be a partition of $[0,2]$. How do we construct partitions of $[0,1]$ and $[1,2]$ from it?

Warm up: lower and upper sums

Let $f(x)=\cos x$.
Consider the partition $P=\{0,1,2,4\}$ of the interval $[0,4]$.
Calculate $L_{P}(f)$ and $U_{P}(f)$.

Lower and upper sums

Let f be a decreasing, bounded function on $[a, b]$.
Let $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ be a partition of $[a, b]$
Which one (or ones) is a valid equation for $L_{P}(f)$? For $U_{f}(P)$?

$$
\begin{array}{lll}
\text { 1. } \sum_{i=0}^{N} \Delta x_{i} f\left(x_{i}\right) & \text { 3. } \sum_{i=0}^{N-1} \Delta x_{i} f\left(x_{i}\right) & \text { 5. } \sum_{i=1}^{N} \Delta x_{i} f\left(x_{i-1}\right) \\
\text { 2. } \sum_{i=1}^{N} \Delta x_{i} f\left(x_{i}\right) & \text { 4. } \sum_{i=1}^{N} \Delta x_{i} f\left(x_{i+1}\right) & \text { 6. } \sum_{i=0}^{N-1} \Delta x_{i+1} f\left(x_{i}\right)
\end{array}
$$

Recall: $\Delta x_{i}=x_{i}-x_{i-1}$.

Joining partitions

Assume

$$
\begin{array}{ll}
L_{P}(f)=2, & U_{P}(f)=6 \\
L_{Q}(f)=3, & U_{Q}(f)=8
\end{array}
$$

1. Is $P \subseteq Q$?
2. Is $Q \subseteq P$?
3. What can you say about $L_{P \cup Q}(f)$ and $U_{P \cup Q}(f)$?

More on upper/lower sums

1. Let f be a bounded function on $[0,1]$.

Assume f is not constant.
Prove that there exists a partition P of $[0,1]$ such that

$$
L_{P}(f) \neq U_{P}(f)
$$

Hint: This is easier than it looks.

More on upper/lower sums

1. Let f be a bounded function on $[0,1]$.

Assume f is not constant.
Prove that there exists a partition P of $[0,1]$ such that

$$
L_{P}(f) \neq U_{P}(f)
$$

Hint: This is easier than it looks.
2. For which functions f is there a partition P of $[0,1]$ such that
$L_{P}(f)=U_{P}(f) ?$

