Today: Suprema and infima.

Homework before Thursday’s class: watch videos 7.5, 7.6.
Warm up: suprema and infima

Find the supremum, infimum, maximum, and minimum of the following sets (if they exist):

1. \(A = [-1, 5) \)
 \(\inf A = \min A = -1 \)
 \(\sup A = 5 \notin A \)
 \(\max A \)

2. \(B = (-\infty, 0) \cup (3, \infty) \)

3. \(C = \{2, 3, 4\} \)

4. \(D = \left\{ \frac{1}{n} : n \in \mathbb{Z}, n > 0 \right\} \)

5. \(E = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{Z}, n > 0 \right\} \)

6. \(F = \{2^n : n \in \mathbb{Z}\} \)
1)

2)

3) \(\inf = \min = 2, \quad \sup = \max = 4 \)

4) \(\max = \sup = 1, \quad \inf = 0 \)

5)

6) \(1 = \min, \quad 0 = \inf, \quad 4 = \max, \quad \sup \)
Empty set

1. Does \(\emptyset \) have an upper bound?
2. Does \(\emptyset \) have a supremum?
3. Does \(\emptyset \) have a maximum?
4. Is \(\emptyset \) bounded above?
1. Does \emptyset have an upper bound? Yes, e.g. 10

2. Does \emptyset have a supremum? No, -10, $-\infty$, -1000

3. Does \emptyset have a maximum? No

4. Is \emptyset bounded above? No

Recall:

Let $A \subseteq \mathbb{R}$. Let $a \in \mathbb{R}$.

- a is an **upper bound** of A means $\forall x \in A, x \leq a$.
- a is the **least upper bound** (lub) or **supremum** (sup) of A means
 - a is an upper bound of A, and
 - there are no smaller upper bounds.
Equivalent definitions of supremum

Assume \(S \) **is an upper bound of the set** \(A \). Which one (or ones) of the following statements is equivalent to “\(S \) is the supremum of \(A \)”?

1. If \(R \) is an upper bound of \(A \), then \(S \leq R \).
2. \(\forall R \geq S, \ R \text{ is an upper bound of } A \).
3. \(\forall R \leq S, \ R \text{ is not an upper bound of } A \).
4. \(\forall R < S, \ R \text{ is not an upper bound of } A \).
5. \(\forall R < S, \ \exists x \in A \text{ such that } R < x \).
6. \(\forall R < S, \ \exists x \in A \text{ such that } R \leq x \).
7. \(\forall R < S, \ \exists x \in A \text{ such that } R < x \leq S \).
8. \(\forall R < S, \ \exists x \in A \text{ such that } R < x < S \).
9. \(\forall \varepsilon > 0, \ \exists x \in A \text{ such that } S - \varepsilon < x \leq S \).
Infima and suprema exercises

Let $A, B \subseteq \mathbb{R}$. Which of the following are true or false? If false, find a counterexample.

1. If $B \subseteq A$ and A is bounded above, then B is bounded above.
2. If $B \subseteq A$ and B is bounded above, then A is bounded above.
3. If $B \subseteq A$ and A is bounded above, then $\sup B \leq \sup A$.
4. If $B \subseteq A$ and A is bounded above, then $\inf B \leq \inf A$.
5. If A and B are bounded above and $\sup A \leq \sup B$, then $A \subseteq B$.
6. If A and B are bounded above, then $\sup(A \cup B) = \max\{\sup A, \sup B\}$. Yes
7. If A and B are bounded above, then $\sup(A \cap B) = \min\{\sup A, \sup B\}$. No
\[A \cap B = \{2\} \]
\[\sup (A \cap B) = \sup \{2, 3\} = 2 \]
\[\min (\sup A, \sup B) = \min \{4, 3\} = 3 \]
Maximum and supremum

Let \(f(x) = x^3 - 3x \).

Find four open intervals \(I_1, I_2, I_3, I_4 \) such that

1. \(f \) has a maximum and a minimum on \(I_1 \).
2. \(f \) has a supremum and no maximum on \(I_2 \).
3. \(f \) has a supremum and no infimum on \(I_3 \).
4. \(f \) does not have a supremum or an infimum on \(I_4 \).
\[y = x^3 - 3x \]

\[I_4 = \mathbb{R} \]
1. Let f and g be bounded functions on $[a, b]$. Then

$$\sup_{[a, b]} (f + g) \leq \sup_{[a, b]} f + \sup_{[a, b]} g$$

2. Let $a < b < c$. Let f be a bounded function on $[a, c]$. Then

$$\sup_{[a, c]} f = \max \left(\sup_{[a, b]} f, \sup_{[b, c]} f \right)$$

3. Let f be a bounded function on $[a, b]$. Let $c \in \mathbb{R}$. Then:

$$\sup_{[a, b]} (cf) = |c| \left(\sup_{[a, b]} |f| \right)$$
$f = \ln x$
on $[-\pi, 0]$
c $c = -1$