MAT137

- Today: Integrable functions.
- Homework before Tuesday's class: watch videos 7.7, 7.8, 7.11.

Warm up: partitions
$\begin{gathered}\text { p partition } \\ \text { of }[a, b]\end{gathered} \quad P=\left\{\begin{array}{ccc}x_{0} \\ n \\ a & , & x_{1}, \ldots, \\ a & x_{n} \\ 11 \\ b\end{array}, x_{i} \in[a, b]\right.$
Which ones are partitions of $[0,2]$?

1. $[0,2]$
2. $(0,2)$
3. $\{0,2\}$
4. $\{1,2\}$
5. $\{0,1.5,1.6,1.7,1.8,1.9,2\}$
6. $\left\{0, \frac{n}{n+1}, n \in \mathbb{Z}_{+} ; 1,2\right\}$

Partitions of different intervals

1. Let P be a partition of $[0,1] . \quad R=P \cup Q$ Let Q be a partition of $[1,2]$. How do we construct a partition Rof $[0,2]$ from them?
2. Let R be a partition of $[0,2]$. $\bar{R}=R \cup\{1\}$ How do we construct partitions of $[0,1]$ and $[1,2]$ from it?

Warm up: lower and upper sums

$$
\begin{aligned}
& \text { Reminder } L_{p}(f)=\sum_{i=1}^{n} m_{i} \Delta x_{i} \\
& \Delta x_{i}=x_{i}-x_{i-1}, \quad m_{i}=\inf _{\Delta x_{i}} f\left(\stackrel{\text { for a contin }}{=} \min _{\Delta x_{i}} f(x)\right)
\end{aligned}
$$

Let $f(x)=\cos x$.
Consider the partition $P=\{0,1,2,4\}$ of the interval $[0,4]$.
Calculate $L_{P}(f)$ and $U_{P}(f)$.

$$
\begin{aligned}
L_{p}(\cos x)= & (\cos 1)(1-0)+(\cos 2)(2-1)+(\cos \pi)(4-2) \\
& f\left(x_{1}\right) \quad x_{1}^{\prime \prime}-x_{0}=\cos 1+\cos 2-1 \cdot 2 \\
U_{p}(\cos x)= & (\cos 0)(1-0)+(\cos 1)(2-1)+(\cos 2)(4-2) \\
& =1+\cos 1+2 \cos 2
\end{aligned}
$$

Lower and upper sums

f

Let f be a decreasing, bounded function on $[a, b]$. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ be a partition of $[a, b]$

Which one (or ones) is a valid equation for $L_{P}(f)$? For $U_{f}(P)$?

Joining partitions

Assume

$$
\begin{array}{ll}
L_{P}(f)=2, & U_{P}(f)=6 \\
L_{Q}(f)=3, & U_{Q}(f)=8
\end{array}
$$

1. Is $P \subseteq Q$? If $P \subseteq Q$
2. Is $Q \subseteq P$?
3. What can you say about $\widehat{\Lambda_{P \cup Q}}(f)$ and $U_{P \cup Q}^{116}(f)$?

$$
\begin{aligned}
& L_{P}\left(f \leqslant L_{P U Q}(f) \leq U_{P U Q}(f) \leqslant U_{p}(f)\right. \\
& L_{Q}(f) \leqslant U_{Q}(f)
\end{aligned}
$$

More on upper/lower sums

1. Let f be a bounded function on $[0,1]$.

Assume f is not constant.
Prove that there exists a partition P of $[0,1]$ such that

$$
L_{P}(f) \neq U_{P}(f)
$$

Hint: This is easier than it looks.

More on upper/lower sums

1. Let f be a bounded function on $[0,1]$.

Assume f is not constant.
Prove that there exists a partition P of $[0,1]$ such that

$$
L_{P}(f) \neq U_{P}(f)
$$

Hint: This is easier than it looks.
2. For which functions f is there a partition P of $[0,1]$ such that
$L_{P}(f)=U_{P}(f) ?$

