Today: Integration of rational functions.

Homework before Tuesday’s class: watch video 10.1.
Rational integrals

1. Calculate \[\int \frac{1}{x + a} \, dx \]

2. Reduce to common denominator \[\frac{2}{x} - \frac{3}{x + 3} \]

3. Calculate \[\int \frac{-x + 6}{x^2 + 3x} \, dx \]

4. Calculate \[\int \frac{1}{x^2 + 3x} \, dx \]

5. Calculate \[\int \frac{1}{x^3 - x} \, dx \]
Compute \[
\int \sec x \, dx
\]
using the substitution \(u = \sin x \).
1. Calculate \(\int \frac{1}{(x + 1)^n} \, dx \) for \(n > 1 \)

2. Calculate \(\int \frac{(x + 1) - 1}{(x + 1)^2} \, dx \)

3. Calculate \(\int \frac{2x + 6}{(x + 1)^2} \, dx \)

4. Calculate \(\int \frac{x^2}{(x + 1)^3} \, dx \)

5. How would you calculate \(\int \frac{\text{polynomial}}{(x + 1)^3} \, dx \)?
1. Calculate \(\int \frac{1}{x^2 + 1} \, dx \) and \(\int \frac{x}{x^2 + 1} \, dx \).

 \textit{Hint:} These two are very short.

2. Calculate \(\int \frac{2x + 3}{x^2 + 1} \, dx \)

3. Calculate \(\int \frac{x^2}{x^2 + 1} \, dx \)

4. Calculate \(\int \frac{x}{x^2 + x + 1} \, dx \)

 \textit{Hint:} Transform it into one like the previous ones
1. How could we compute an integral of the form

\[\int \frac{\text{polynomial}}{(x + 1)^3(x + 2)} \, dx \]
1. How could we compute an integral of the form

$$\int \frac{\text{polynomial}}{(x + 1)^3(x + 2)} \, dx$$

2. How could we compute an integral of the form

$$\int \frac{\text{polynomial}}{(x + 1)^3(x + 2)x^4(x^2 + 1)(x^2 + 4x + 7)} \, dx$$
A harder antiderivative

1. Calculate

\[\frac{d}{dx} \arctan x \], \quad \frac{d}{dx} \left[\frac{x}{1 + x^2} \right].

2. Use the previous answer to calculate

\[\int \frac{1}{(1 + x^2)^2} \, dx \]
A harder antiderivative

1. Calculate

\[\frac{d}{dx} \left[\arctan x \right], \quad \frac{d}{dx} \left[\frac{x}{1 + x^2} \right]. \]

2. Use the previous answer to calculate

\[\int \frac{1}{(1 + x^2)^2} \, dx \]

3. Calculate

\[\int \frac{1}{(1 + x^2)^3} \, dx \]