Today: Integration of trigonometric functions.

Homework before Thursday’s class: watch videos 9.10, as well as 9.11, 9.12.
We want to compute the number

\[A = \int_{-\pi/2}^{3\pi} \sin^2 x \, dx. \]

Sketch the graph of \(y = \sin^2 x \). Look at it and search for symmetries. You can get the answer without performing any integration.

Check it using \(\sin^2 x = \frac{1 - \cos(2x)}{2} \)
Practice: Integrals with trigonometric functions

Compute the following antiderivatives. (Once you get them to a form from where it is easy to finish, you may stop.)

1. \[\int \sin^{10} x \cos x \, dx \]
2. \[\int \sin^{10} x \cos^3 x \, dx \]
3. \[\int e^{\cos x} \cos x \sin^5 x \, dx \]
4. \[\int \cos^2 x \, dx \]
5. \[\int \sin^4 x \, dx \]
6. \[\int \csc x \, dx \]

Useful trig identities

\[\sin^2 x + \cos^2 x = 1 \]
\[\tan^2 x + 1 = \sec^2 x \]
\[\sin^2 x = \frac{1 - \cos(2x)}{2} \]
\[\cos^2 x = \frac{1 + \cos(2x)}{2} \]
A reduction formula

Let $I_n = \int_0^{2\pi} \sin^n x \, dx$.

1. Compute I_0 and I_1.

2. Starting with I_n, use integration by parts. Then use the main trig identity to obtain an equation involving I_n and I_{n-2}.

3. Use the previous answers to get a formula for I_n for every positive integer n.

4. Compute I_8. (The answer should be $\frac{35}{64}\pi$).
A reduction formula

Let $I_n = \int_0^{2\pi} \sin^n x \, dx$.

1. Compute I_0 and I_1.

2. Starting with I_n, use integration by parts. Then use the main trig identity to obtain an equation involving I_n and I_{n-2}.
A reduction formula

Let $I_n = \int_0^{2\pi} \sin^n x \, dx$.

1. Compute I_0 and I_1.

2. Starting with I_n, use integration by parts. Then use the main trig identity to obtain an equation involving I_n and I_{n-2}.

3. Use the previous answers to get a formula for I_n for every positive integer I_n.

4. Compute I_8. (The answer should be $\frac{35}{64}\pi$).
We want to compute

\[I = \int \sin^3 x \cos^2 x \, dx \]

1. Attempt the substitution \(u = \sin x \)
2. Attempt the substitution \(u = \cos x \)
3. One worked better than the other. Which one? Why?

Finish the problem.
We want to compute

\[I = \int \sin^3 x \cos^2 x \, dx \]

1. Attempt the substitution \(u = \sin x \)
2. Attempt the substitution \(u = \cos x \)
3. One worked better than the other. Which one? Why?

Finish the problem.

4. Assume we want to compute

\[\int \sin^n x \cos^m x \, dx \]

When will the substitution \(u = \sin x \) be helpful?
When will the substitution \(u = \cos x \) be helpful?
Integral of products of secant and tangent

To integrate
\[\int \sec^n x \tan^m x \, dx \]

- If \(n > 0 \), then try the substitution \(u = \tan x \).
- If \(m > 0 \), then try the substitution \(u = \sec x \).

Hint: You will need

- \(\frac{d}{dx} [\tan x] = \ldots \)
- \(\frac{d}{dx} [\sec x] = \ldots \)

- The trig identity involving sec and tan