MAT137

- Today: Integration of rational functions.
- Homework before Tuesday's class: watch video 10.1.

Rational integrals

1. Calculate $\int \frac{1}{x+a} d x=\ln |x+a|+C$
2. Reduce to common denominator $\frac{2}{x}-\frac{3}{x+3}$
3. Calculate $\int \frac{-x+6}{x^{2}+3 x} d x=\int\left(\frac{2}{x}-\frac{3}{x+3}\right) d x$
4. Calculate $\int \frac{1}{x^{2}+3 x} d x=2 \ln |x|-3 \ln |x+3|+C$
5. Calculate $\int \frac{1}{x^{3}-x} d x$

$$
\begin{aligned}
& \frac{1}{x^{3}-x}=\frac{1}{x\left(x^{2}-1\right)}=\frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} \\
& 1=A(x-1)(x+1)+B x(x+1)+C x(x-1)
\end{aligned}
$$

II plug in:

$$
\begin{aligned}
\text { plug in: } \left.\begin{array}{rl}
x=0 & 1=A(0-1)(0+1) \Rightarrow A=-1 \\
x=1 & 1=B \cdot 1(1+1) \Rightarrow B=\frac{1}{2} \\
x=-1 & 1=C \cdot(-1)(-1-1) \Rightarrow C=1 / 2 \\
\int \frac{d x}{x^{3}-x}= & -\int \frac{d x}{x}+\frac{1}{2} \int \frac{d x}{x-1}+\frac{1}{2} \int \frac{d x}{x+1} \\
= & -\ln |x|+\frac{1}{2} \ln |x-1|+\frac{1}{2} \ln |x+1|+C \\
=\ln \frac{\sqrt{(x-1)(x+1) \mid}}{|x|}+C
\end{array} \right\rvert\, \begin{aligned}
x & \frac{d x}{x}=\ln |x| \\
& +C
\end{aligned} \\
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{x}-\frac{3}{x+3}=\frac{2(x+3)-3 x}{x(x+3)}=\frac{-x+6}{x(x+3)}=\frac{-x+6}{x^{2}+3 x} \\
& \frac{(1)}{x^{2}+3 x}=\frac{1}{x(x+3)}=\frac{A^{1 / 3}}{x}+\frac{B^{-1 / 3}}{x+3}=\frac{A(x+3)+B x}{x^{2}+3 x} \\
& 1=A(x+3)+B x \quad \text { Irplus in } \\
& \begin{array}{l}
I \\
0 x+1= \\
\\
\\
\text { A }+B) x+3 A
\end{array} \\
& \left\{\begin{array}{l}
A+B=0 \\
3 A=1 \Rightarrow A=1 / 3
\end{array}\right. \\
& x=0 \quad 1=A(0+3)+B 0 \\
& \Rightarrow A=\frac{1}{3} \\
& x=-3 \quad 1=A\left(-3 x^{3}\right)+B(-3) \\
& \int \frac{d x}{x^{2}+3 x}=\int \frac{1 / 3 d x}{x}-\int \frac{1 / 3 d x}{x+3}=\frac{1}{3} \ln |x|-\frac{1}{3} \ln |x+3|+C \\
& =\frac{1}{3} \ln \left|\frac{x^{3}}{x+3}\right|+c=\ln \sqrt[3]{\left|\frac{x}{x+3}\right|}+c
\end{aligned}
$$

The integral of secant

Compute

$$
\int \sec x d x
$$

using the substitution $u=\sin x$.

$$
\begin{aligned}
& \int \sec x d x=\int \frac{d x}{\cos x}=\int \frac{\cos x d x}{\cos ^{2} x}=\int \frac{d \sin x}{1-\sin ^{2} x} \\
& =\int \frac{d u}{1-u^{2}} \text { for } u=\sin x \quad 1-\sin ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1-u^{2}}=\frac{A}{1-u}+\frac{B}{1+u}=\frac{1 / 2}{1-u}+\frac{1 / 2}{1+u} \text {. Then } \\
& \begin{array}{c}
\frac{1}{1-u^{2}} d u=\frac{1}{2} \int \frac{d u}{1-u}+\frac{1}{2} \int \frac{d u}{1+u}=-\frac{1}{2} \ln |u-1|+\frac{1}{2} \ln |u+1|+C \\
-\frac{1}{2} \int \frac{d u}{u-1} \\
=\frac{1}{2} \ln \left|\frac{u+1}{u-1}\right|+C=\frac{1}{2} \ln \left|\frac{\sin x+1}{\sin x-1}\right|+C \\
=\frac{1}{2} \ln \left|\frac{(\sin x+1)^{2}}{\sin ^{2} x-1}\right|=\frac{1}{2} \ln \left|\frac{\sin x+1}{\cos x}\right|^{2}+C \quad=\ln \left|\frac{\sin x+1}{\cos x}\right|+C=\ln |\tan x+\sec x| \\
\quad-\cos ^{\prime 2} x \quad+C
\end{array}
\end{aligned}
$$

Repeated factors

1. Calculate $\int \frac{1}{(x+1)^{n}} d x$ for $n>1=$
2. Calculate $\int \frac{(x+1)-1}{(x+1)^{2}} d x=\int \frac{x d x}{(x+1)^{2}}$
3. Calculate $\int \frac{2 x+6}{(x+1)^{2}} d x$
4. Calculate $\int \frac{x^{2}}{(x+1)^{3}} d x$
5. How would you calculate $\int \frac{\text { polynomial }}{(x+1)^{3}} d x$?

$$
\begin{aligned}
& \text { 1. } \int \frac{d x}{(x+1)^{n}}=\int(x+1)^{-n} d x=\frac{(x+1)^{-n+1}}{n>1}+C \\
& \begin{array}{l}
x+1=u \\
d x=\frac{d u}{}
\end{array} \quad \int u^{-n} d u=\frac{u^{-n+1}}{-n+1}+C \\
& \text { 2. } \int \frac{x d x}{(x+1)^{2}}=\int \frac{(x+1) d x}{(x+1)^{2}}-\int \frac{d x}{(x+1)^{2}} \\
& =\ln |x+1|+\frac{1}{x+1}+C \\
& \text { 3-5. } u=x+1, \quad x=u-1, \quad x^{2}=(u-1)^{2}=u^{2}-2 u+1 \\
& \quad x^{2}=(x+1)^{2}-2(x+1)+1 \quad d x=d u
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \int \frac{x^{2} d x}{(x+1)^{3}}=\int \frac{\left(u^{2}-2 u+1\right) d u}{u^{3}} \\
& =\int\left(u^{-1}-2 u^{2}+u^{-3}\right) d u=\ldots=x+1 \\
& \quad \int \frac{\operatorname{pol}(u)}{u^{3}} d u=\ldots
\end{aligned}
$$

Irreducible quadratics

1. Calculate $\int \frac{1}{x^{2}+1} d x$ and $\int \frac{x}{x^{2}+1} d x$.

Hint: These two are very short.
2. Calculate $\int \frac{2 x+3}{x^{2}+1} d x=\int \frac{d\left(x^{2}+1\right)}{x^{2}+1}+3 \int \frac{d x}{x^{2}+1}$
4. Calculate $\int \frac{x}{x^{2}+x+1} d x$

Hint: Transform it into one like the previous ones

$$
\begin{aligned}
& \text { 1. } \int \frac{d x}{x^{2}+1}=\arctan x+C \\
& \int \frac{x d x}{x^{2}+1}=\frac{1}{2} \int \frac{d\left(x^{2}+1\right)}{x^{2}+1}=\frac{1}{2} \ln \left(x^{2}+1\right)+C \\
& d x^{2}=2 x d x
\end{aligned}
$$

3. $\int \frac{x^{2}+1}{x^{2}+1} d x-\int \frac{d x}{x^{2}+1}=\int d x-\arctan x+C$
4. $\int \frac{x}{x^{2}+x+1} d x=\int \frac{x+\frac{1}{2}-\frac{1}{2}}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x=\int \frac{u-\frac{1}{2}}{u^{2}+\frac{3}{4}} d u \quad$
complete square: complete square:

$$
\begin{array}{c|c}
x^{2}+\underline{x}+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} & u=x+\frac{1}{2} \\
\underline{x}^{2}+\underline{x}+\frac{1}{4} & d u=d x
\end{array}
$$

Note:

$$
\begin{array}{ll}
& \int \frac{u d u}{u^{2}+5}=\int \frac{\sqrt{5} t d(\sqrt{5} t)}{5 t^{2}+5}=\int \frac{t d t}{t^{2}+1} \\
\begin{aligned}
u=\sqrt{5} t \\
d u=\sqrt{5} d t \\
u^{2}=5 t
\end{aligned} & =\frac{1}{2} \ln \left|t^{2}+1\right|+c=\frac{1}{2} \ln \left|\left(\frac{u}{\sqrt{5}}\right)^{2}+1\right|+c \\
& =\frac{1}{2} \ln \left|\frac{u^{2}}{5}+1\right|+c=\frac{1}{2} \ln \left|u^{2}+5\right|+c_{1}
\end{array}
$$

$$
\begin{aligned}
& \int \frac{d u}{u^{2}+3}=\int \frac{\sqrt{3} d t}{3 t^{2}+3}=\frac{1}{\sqrt{3}} \int \frac{d t}{t^{2}+1}=\frac{1}{\sqrt{3}} \arctan t+C \\
& \begin{aligned}
u=\sqrt{3} t & =\frac{1}{\sqrt{3}} \arctan \left(\frac{u}{\sqrt{3}}\right)+C
\end{aligned}
\end{aligned}
$$

Messier rational functions

1. How could we compute an integral of the form

$$
\begin{array}{r}
\int \frac{\text { polynomial deg }^{2} 4}{(x+1)^{3}(x+2)} d x ? \\
=\int \frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}+\frac{D}{x+2} d x
\end{array}
$$

Messier rational functions

1. How could we compute an integral of the form

$$
\int \frac{\text { polynomial }}{(x+1)^{3}(x+2)} d x ?
$$

2. How could we compute an integral of the form

$$
\int \frac{\text { polynomial }}{(x+1)^{3}(x+2) x^{4}\left(x^{2}+1\right)\left(x^{2}+4 x+7\right)} d x ?
$$

A harder antiderivative

1. Calculate

$$
\frac{d}{d x}[\arctan x], \quad \frac{d}{d x}\left[\frac{x}{1+x^{2}}\right]
$$

2. Use the previous answer to calculate

$$
\int \frac{1}{\left(1+x^{2}\right)^{2}} d x
$$

3. Calculate

$$
\int \frac{1}{\left(1+x^{2}\right)^{3}} d x
$$

