MAT137

- Today: Improper integrals.
- Homework before Wednesday's class: watch videos 12.7, 12.8.

Recall the definitions

1. Let f be a bounded, continuous function on $[c, \infty)$. How do we define the improper integral

$$
\int_{c}^{\infty} f(x) d x ?
$$

2. Let f be a continuous function on $(a, b]$. How do we define the improper integral

$$
\int_{a}^{b} f(x) d x ?
$$

Computation

Calculate, using the definition of improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{2}+x} d x
$$

Hint: $\frac{1}{x^{2}+x}=\frac{(x+1)-(x)}{x(x+1)}$

The most important improper integrals

Use the definition of improper integral to determine for which values of $p \in \mathbb{R}$ each of the following improper integrals converges.

1. $\int_{1}^{\infty} \frac{1}{x^{p}} d x$
2. $\int_{0}^{1} \frac{1}{x^{p}} d x$
3. $\int_{0}^{\infty} \frac{1}{x^{p}} d x$

A "simple" integral

What is $\int_{-1}^{1} \frac{1}{x} d x \quad$?

A "simple" integral

What is $\int_{-1}^{1} \frac{1}{x} d x$?

1. $\int_{-1}^{1} \frac{1}{x} d x=\left.(\ln |x|)\right|_{-1} ^{1}=\ln |1|-\ln |-1|=0$
2. $\int_{-1}^{1} \frac{1}{x} d x=0$ because $f(x)=\frac{1}{x}$ is an odd function.
3. $\int_{-1}^{1} \frac{1}{x} d x$ is divergent.

Collection of antiderivatives

Let f be a positive, continuous function with domain \mathbb{R}.
We know two ways to describe a collection of antiderivatives:

1. $G(x)+C$ for $C \in \mathbb{R}$, where G is any one antiderivative.
2. The collection of functions F_{a} for $a \in \mathbb{R}$, where

$$
F_{a}(x)=\int_{a}^{x} f(t) d t
$$

These two collections are not always the same.

- Find one function f for which they are the same.
- Find one function f for which they are not the same.
- In general, when are they the same?

Hint:

