MAT137

- Today: Integration of trigonometric functions.
- Homework before Thursday's class: watch videos 9.10, as well as 9.11, 9.12.

Warm up: Symmetry

We want to compute the number

$$
A=\int_{-\pi / 2}^{3 \pi} \sin ^{2} x d x
$$

Sketch the graph of $y=\sin ^{2} x$. Look at it and search for symmetries. You can get the answer without performing any integration.

Check it using $\sin ^{2} x=\frac{1-\cos (2 x)}{2}$

Practice: Integrals with trigonometric functions

Compute the following antiderivatives. (Once you get them to a form from where it is easy to finish, you may stop.)

1. $\int \sin ^{10} x \cos x d x$
2. $\int \sin ^{10} x \cos ^{3} x d x$
3. $\int e^{\cos x} \cos x \sin ^{5} x d x$
4. $\int \cos ^{2} x d x$
5. $\int \sin ^{4} x d x$
6. $\int \csc x d x$

Useful trig identities

$$
\begin{array}{ll}
\sin ^{2} x+\cos ^{2} x=1 & \sin ^{2} x=\frac{1-\cos (2 x)}{2} \\
\tan ^{2} x+1=\sec ^{2} x & \underline{\cos ^{2} x}=\frac{1+\cos (2 x)}{2}
\end{array}
$$

$$
\left.\begin{array}{rl}
\sin 2 x= & 2 \sin x \cos x \\
\cos 2 x=\underbrace{\cos ^{2} x-\sin ^{2} x}_{11} & =\cos ^{2} x-\left(1-\cos ^{2} x\right) \\
& =2 \cos ^{2} x-1
\end{array}\right)
$$

1. $\int \sin ^{10} x \cdot(\cos x \cdot d x)=\int \sin ^{10} x d(\sin x)=\int u^{10} d u$ $d f=f^{\prime}(x) d x, \quad d \sin x=\cos x \cdot d x, \quad u=\sin x$

$$
=\frac{u^{\prime \prime}}{11}+c=\frac{\sin ^{11} x}{11}+c
$$

$\left.2 \int \sin ^{10} x \cdot \cos ^{3} x\right) d x=\int \sin ^{10} x\left(1-\sin ^{2} x\right) d \sin x$

$$
1-\sin ^{2} x^{2} \cos ^{2} x \cdot \cos x=1 u^{10}\left(1-u^{2}\right) d u=\cdots
$$

3. $\int e^{\cos x} \cdot \cos x \cdot \sin ^{5} x d x=$
$\sin ^{4} x \cdot \sin x$

$$
\cos x=u, d u=-(\sin x) d x
$$

$$
\begin{aligned}
& =-\int e^{\cos x} \cdot \cos x \cdot\left(\sin ^{2} x\right)^{2} \cdot d \cos x \\
& =-\int e^{u} \cdot u \cdot\left(1-u^{2}\right)^{2} d u=\ldots
\end{aligned}
$$

$\int u^{s} e^{u} d u$ - integrate by parts 5 times

$$
\begin{aligned}
& \text { 4. } \int \cos ^{2} x d x=\int \frac{1+\cos 2 x}{2} d x \\
& =\int \frac{1}{2} d x+\frac{1}{2} \int \cos 2 x d x=\frac{x}{2}+\frac{1}{4} \int \cos (2 x) d(2 x) \\
& =\frac{x}{2}+\frac{1}{4} \int \cos 4 d u=\frac{x}{2}+\left.\frac{\sin 4}{4}\right|_{u=2 x}+C \\
& =\frac{x}{2}+\frac{\sin (2 x)}{4}+C \\
& \text { 5. } \int \sin ^{4} x x d x=\int\left(\frac{1-\cos (2 x)}{2}\right)^{2} d x=\frac{1}{4} \int\left(1-2 \cos 2 x+\cos ^{2} 2 x\right)
\end{aligned}
$$

$$
\text { 6. } \begin{aligned}
& \int \csc x d x=\int \frac{d x}{\sin x}=\int \frac{\sin x d x}{\sin ^{2} x} \\
& =-\int \frac{d \cos x}{1-\cos ^{2} x}=-\int \frac{d u}{1-u^{2}}=\int \frac{d u}{u^{2}-1} \\
& \frac{1}{u^{2}-1}=\frac{1}{(u-1)(u+1)}=\frac{1 / 2}{u-1}+\frac{-1 / 2}{u+1} \\
& =\frac{1}{2} \int \frac{d u}{u-1}-\frac{1}{2} \int \frac{d u}{u+1}=\frac{1}{2} \ln |u-1|-\frac{1}{2} \ln |u+1|+c \\
& =\frac{1}{2} \ln \left|\frac{u-1}{u+1}\right|+c=\frac{1}{2} \ln \left|\frac{\cos x-1}{\cos x+1}\right|+c
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \ln \left|\frac{(\cos x-1)^{2}}{(\cos x+1)(\cos x-1)}\right|+C \\
& \cos ^{2} x-1=-\sin ^{2} x \\
& =\ln \left|\frac{\cos x-1}{\sin x}\right|^{2}+C=\ln \left|\frac{\cos x-1}{\sin x}\right|+C \\
& =\ln |\cot x-\csc x|+C
\end{aligned}
$$

A reduction formula

Let $I_{n}=\int_{0}^{2 \pi} \sin ^{n} x d x$.

1. Compute I_{0} and I_{1}.
2π

A reduction formula
Let $I_{n}=\int_{0}^{2 \pi} \sin ^{n} x d x$.

1. Compute I_{0} and I_{1}.
2. Starting with I_{n}, use integration by parts.

Then use the main trig identity to obtain an equation involving I_{n} and I_{n-2}. 2π

$$
\begin{aligned}
& I_{n}=\int_{0}^{\text {involving } I_{n}} \sin ^{n} x d x=-\int_{0}^{n-2 \cdot 2 \pi} \sin ^{n-1} x d \cos x \stackrel{b y}{ } \text { parts }\left.^{n} \sin ^{n-1} x \cos x\right|_{0} ^{0} \\
& +\int_{0}^{2 \pi} \sin ^{n-1} x \cdot \sin x \\
& \cos x d \sin ^{n-1} x=(n-1) \int_{0}^{2 \pi} \cos x \cdot \sin ^{n-2} x \cdot \cos x d x
\end{aligned}
$$

$$
\begin{aligned}
& =(n-1) \int_{0}^{2 \pi}\left(1-\sin ^{2} x\right) \sin ^{n-2} x d x \\
& I_{n}=(n-1) I_{n-2}-(n-1) I_{n} \\
& \Rightarrow I_{n}=\frac{n-1}{n} I_{n-2}=\frac{n-1}{n} \cdot \frac{n-3}{n-2} I_{n-4}=\ldots I_{n}=(n-1) I_{n-2}
\end{aligned}
$$

For odd $n=I_{n}=\ldots I_{n-2}=\ldots I_{n-4}=\ldots I_{1}=0$

$$
n=2 m+1
$$

For even $n \quad I_{8}=\frac{7 \cdot 5 \cdot 3 \cdot 1}{8 \cdot 6 \cdot 4 \cdot 2} I_{0}=\frac{35}{64} \pi$

$$
I_{2 m}=\frac{(2 m-1)(2 m-3) \cdots 1}{(2 m)(2 m-2) \ldots(2)!} I_{0}=\frac{(2 m-1)!!}{(2 m)!!} I_{0}
$$

A reduction formula

Let $I_{n}=\int_{0}^{2 \pi} \sin ^{n} x d x$.

1. Compute I_{0} and I_{1}.
2. Starting with I_{n}, use integration by parts.

Then use the main trig identity to obtain an equation involving I_{n} and I_{n-2}.
3. Use the previous answers to get a formula for I_{n} for every positive integer I_{n}.
4. Compute I_{8}. (The answer should be $\frac{35}{64} \pi$).

Integral of products of sin and cos

We want to compute $\sin ^{2} x \sin x$

$$
I=\int \sin ^{\prime \prime} x \cos ^{2} x d x
$$

1. Attempt the substitution $u=\sin x$
2. Attempt the substitution $u=\cos x$
3. One worked better than the other. Which one? Why? Finish the problem.

Integral of products of \sin and cos

We want to compute

$$
I=\int \sin ^{3} x \cos ^{2} x d x
$$

1. Attempt the substitution $u=\sin x$
2. Attempt the substitution $u=\cos x$
3. One worked better than the other. Which one? Why? Finish the problem.
4. Assume we want to compute

$$
\int \sin ^{n} x \cos ^{m} x d x
$$

When will the substitution $u=\sin x$ be helpful? When will the substitution $u=\cos x$ be helpful?

Integral of products of secant and tangent

To integrate

$$
\int \sec ^{n} x \tan ^{m} x d x
$$

- If ???, then try the substitution $u=\tan x$.
- If ???, then try the substitution $u=\sec x$.

Hint: You will need

- $\frac{d}{d x}[\tan x]=\ldots$

$$
\frac{d}{d x}[\sec x]=\ldots
$$

- The trig identity involving sec and tan

