MAT137

- Today: The Big Theorem.
- Homework for the Reading Week: watch videos 12.1, $12.4,12.5$, as well as $12.2,12.3,12.6$.

Calculations

1. $\lim _{n \rightarrow \infty} \frac{n!+2 e^{n}}{3 n!+4 e^{n}}$
2. $\lim _{n \rightarrow \infty} \frac{2^{n}+(2 n)^{2}}{2^{n+1}+n^{2}}$
3. $\lim _{n \rightarrow \infty} \frac{5 n^{5}+5^{n}+5 n!}{n^{n}}$

Big Theorem

If we have two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, then we write $a_{n} \ll b_{n}$ if

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0 .
$$

Order the following sequences according to \ll :

$$
n^{2}, n^{3}+n, 46 n+7, n^{3^{n}}, n \ln n, n^{1.2}, n^{n!}, 4^{n} n^{3}, n^{2 n+7}
$$

Useful: Stirling's formula

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \quad \text { as } \quad n \rightarrow \infty
$$

Use this formula to construct two sequences $\left\{u_{n}\right\}_{n},\left\{v_{n}\right\}_{n},\left\{x_{n}\right\}_{n},\left\{y_{n}\right\}_{n}$, such that they all diverge to infinity, and for every $a>0$ and for every $c>1$:

$$
\begin{aligned}
u_{n} & \ll \ln n \ll v_{n} \ll n^{a} \ll \\
\ll c^{n} & \ll x_{n} \ll n!\ll y_{n} \ll n^{n}
\end{aligned}
$$

Review: a recursive sequence

$$
a_{1}=1, a_{n+1}=\sqrt{2 a_{n}+3}
$$

The first few terms are

$$
1,2.23 \ldots, 2.73 \ldots, 2.90 \ldots
$$

Assume that this sequence converges. Prove that the limit is 3 .

Use the monotone convergence theorem to prove that our sequence converges.

What would happen if we used $a_{1}=4, a_{n+1}=\sqrt{2 a_{n}+3}$?

