• Today: Properties of sequences.

• Homework before Wednesday's class: watch videos 11.5, 11.6.

Recall: $\lim_{n \to \infty} a_n = L$ means that

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, \quad n \ge n_0 \implies |L - a_n| < \varepsilon.$$

Find the limit and prove it directly from the definition for

$$a_n = \frac{n}{3n+5}$$

Let f be a function with domain $[0, \infty)$. We define a sequence as $a_n = f(n)$.

1. IF f is increasing, THEN $\{a_n\}_{n=0}^{\infty}$ is increasing.

2. IF $\{a_n\}_{n=0}^{\infty}$ is increasing, THEN *f* is increasing.

If you think any of them is false, prove it with a counterexample.

Construct 8 examples of sequences.

If any of them is impossible, cite a theorem to justify it.

		convergent	divergent
monotonic	bounded	???	???
	unbounded	???	???
not monotonic	bounded	???	???
	unbounded	???	???

A suspicious calculation – What is wrong?

The sequence
$$\{a_n\}_{n=0}^{\infty}$$
 defined by $\begin{cases} a_0 = 1 \\ orall n \in N, \qquad a_{n+1} = 1 - a_n \end{cases}$

has limit 1/2.

Proof. • Let $L = \lim a_n$.

•
$$a_{n+1} = 1 - a_n$$

•
$$\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}\left[1-a_n\right]$$

 $n \rightarrow \infty$

- L = 1 L
- L = 1/2.

Consider the sequence $\{R_n\}_{n=0}^{\infty}$ defined by

$$\begin{cases} R_0 = 1 \\ \forall n \in N, \qquad R_{n+1} = \frac{R_n + 2}{R_n + 3} \end{cases}$$

Compute R_1 , R_2 , R_3 .

Is this proof correct?

Let $\{R_n\}_{n=0}^{\infty}$ be the sequence in the previous slide.

Claim:

$$\{R_n\}_{n=0}^{\infty} \longrightarrow -1 + \sqrt{3}.$$

Proof.

• Let
$$L = \lim_{n \to \infty} R_n$$
.
• $R_{n+1} = \frac{R_n + 2}{R_n + 3}$
• $\lim_{n \to \infty} R_{n+1} = \lim_{n \to \infty} \frac{R_n + 2}{R_n + 3}$
• $L = \frac{L+2}{L+3}$

• L(L+3) = L+2

•
$$L^2 + 2L - 2 = 0$$

•
$$L = -1 \pm \sqrt{3}$$

• *L* must be positive, so $L = -1 + \sqrt{3}$

Consider the sequence $\{R_n\}_{n=0}^{\infty}$ defined by

$$\begin{cases} R_0 = 1 \\ \forall n \in N, \qquad R_{n+1} = \frac{R_n + 2}{R_n + 3} \end{cases}$$

Prove \$\{R_n\}_{n=0}^{\infty}\$ is bounded below by 0.
 Prove \$\{R_n\}_{n=0}^{\infty}\$ is decreasing (use induction)
 Prove \$\{R_n\}_{n=0}^{\infty}\$ is convergent (use a theorem)
 Now the calculation in the previous slide is correct, and we can get the value of the limit.