MAT137

- Today: Properties of sequences.
- Homework before Wednesday's class: watch videos 11.5, 11.6.

Review: the limit of a sequence

Recall: $\lim _{n \rightarrow \infty} a_{n}=L$ means that

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N} \text { s.t. } \forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon
$$

Find the limit and prove it directly from the definition for

$$
a_{n}=\frac{n}{3 n+5}
$$

True or False - Monotonic sequences vs functions

Let f be a function with domain $[0, \infty)$.
We define a sequence as $a_{n}=f(n)$.

1. IF f is increasing, THEN $\left\{a_{n}\right\}_{n=0}^{\infty}$ is increasing.
2. IF $\left\{a_{n}\right\}_{n=0}^{\infty}$ is increasing, THEN f is increasing.

If you think any of them is false, prove it with a counterexample.

Examples

Construct 8 examples of sequences.
If any of them is impossible, cite a theorem to justify it.

		convergent	divergent
monotonic	bounded	$? ? ?$	$? ? ?$
	unbounded	$? ? ?$	$? ? ?$
	bounded	$? ? ?$	$? ? ?$
	unbounded	$? ? ?$	$? ? ?$

A suspicious calculation - What is wrong?

The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined by

$$
\begin{cases} & a_{0}=1 \\ \forall n \in N, & a_{n+1}=1-a_{n}\end{cases}
$$

has limit $1 / 2$.

Proof.

- Let $L=\lim _{n \rightarrow \infty} a_{n}$.
- $a_{n+1}=1-a_{n}$
- $\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left[1-a_{n}\right]$
- $L=1-L$
- $L=1 / 2$.

A sequence defined by recurrence

Consider the sequence $\left\{R_{n}\right\}_{n=0}^{\infty}$ defined by

$$
\begin{cases} & R_{0}=1 \\ \forall n \in N, & R_{n+1}=\frac{R_{n}+2}{R_{n}+3}\end{cases}
$$

Compute R_{1}, R_{2}, R_{3}.

Is this proof correct?

Let $\left\{R_{n}\right\}_{n=0}^{\infty}$ be the sequence in the previous slide.

Claim:

$$
\left\{R_{n}\right\}_{n=0}^{\infty} \longrightarrow-1+\sqrt{3}
$$

Proof.

- Let $L=\lim _{n \rightarrow \infty} R_{n}$.
- $L(L+3)=L+2$
- $R_{n+1}=\frac{R_{n}+2}{R_{n}+3}$
- $L^{2}+2 L-2=0$
- $L=-1 \pm \sqrt{3}$
- L must be positive, so
$L=-1+\sqrt{3}$

A sequence defined by recurrence

Consider the sequence $\left\{R_{n}\right\}_{n=0}^{\infty}$ defined by

$$
\begin{cases} & R_{0}=1 \\ \forall n \in N, & R_{n+1}=\frac{R_{n}+2}{R_{n}+3}\end{cases}
$$

1. Prove $\left\{R_{n}\right\}_{n=0}^{\infty}$ is bounded below by 0 .
2. Prove $\left\{R_{n}\right\}_{n=0}^{\infty}$ is decreasing (use induction)
3. Prove $\left\{R_{n}\right\}_{n=0}^{\infty}$ is convergent (use a theorem)
4. Now the calculation in the previous slide is correct, and we can get the value of the limit.
