Today: Properties of sequences.

Homework before Wednesday’s class: watch videos 11.5, 11.6.
Review: the limit of a sequence

Recall: $\lim_{n \to \infty} a_n = L$ means that

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L - a_n| < \varepsilon.$$

Find the limit and prove it directly from the definition for

$$a_n = \frac{n}{3n + 5}$$
True or False – Monotonic sequences vs functions

Let f be a function with domain $[0, \infty)$. We define a sequence as $a_n = f(n)$.

1. IF f is increasing, THEN $\{a_n\}_{n=0}^{\infty}$ is increasing.

2. IF $\{a_n\}_{n=0}^{\infty}$ is increasing, THEN f is increasing.

If you think any of them is false, prove it with a counterexample.
Examples

Construct 8 examples of sequences. If any of them is impossible, cite a theorem to justify it.

<table>
<thead>
<tr>
<th></th>
<th>convergent</th>
<th>divergent</th>
</tr>
</thead>
<tbody>
<tr>
<td>monotonic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bounded</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>unbounded</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>not monotonic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bounded</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>unbounded</td>
<td>???</td>
<td>???</td>
</tr>
</tbody>
</table>
A suspicious calculation – What is wrong?

The sequence \(\{ a_n \}_{n=0}^{\infty} \) defined by

\[
\begin{align*}
& a_0 = 1 \\
& \forall n \in \mathbb{N}, \quad a_{n+1} = 1 - a_n
\end{align*}
\]

has limit 1/2.

Proof.

- Let \(L = \lim_{n \to \infty} a_n \).
- \(a_{n+1} = 1 - a_n \)
- \(\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} [1 - a_n] \)
- \(L = 1 - L \)
- \(L = 1/2 \).
Consider the sequence \(\{ R_n \}_{n=0}^{\infty} \) defined by

\[
\begin{align*}
R_0 &= 1 \\
\forall n \in \mathbb{N}, \quad R_{n+1} &= \frac{R_n + 2}{R_n + 3}
\end{align*}
\]

Compute \(R_1, R_2, R_3 \).
Is this proof correct?

Let \(\{R_n\}_{n=0}^{\infty} \) be the sequence in the previous slide.

Claim:
\[
\{R_n\}_{n=0}^{\infty} \rightarrow -1 + \sqrt{3}.
\]

Proof.

- Let \(L = \lim_{n \to \infty} R_n \).
- \(R_{n+1} = \frac{R_n + 2}{R_n + 3} \)
- \(\lim_{n \to \infty} R_{n+1} = \lim_{n \to \infty} \frac{R_n + 2}{R_n + 3} \)
- \(L = \frac{L + 2}{L + 3} \)
- \(L(L + 3) = L + 2 \)
- \(L^2 + 2L - 2 = 0 \)
- \(L = -1 \pm \sqrt{3} \)
- \(L \) must be positive, so \(L = -1 + \sqrt{3} \)
Consider the sequence \(\{ R_n \}_{n=0}^{\infty} \) defined by
\[
\begin{align*}
R_0 &= 1 \\
\forall n \in \mathbb{N}, \quad R_{n+1} &= \frac{R_n + 2}{R_n + 3}
\end{align*}
\]

1. Prove \(\{ R_n \}_{n=0}^{\infty} \) is bounded below by 0.
2. Prove \(\{ R_n \}_{n=0}^{\infty} \) is decreasing (use induction)
3. Prove \(\{ R_n \}_{n=0}^{\infty} \) is convergent (use a theorem)
4. Now the calculation in the previous slide is correct, and we can get the value of the limit.