## MAT137

- Today: Asymptotes.
- Tomorrow: review videos 6.13-6.18.


## Reminder: Find the coordinates of $P$

$$
f(x)=3 x+4+\frac{2 x-10}{x^{2}}
$$



## An equation from the asymptotes

Construct a function $f$ that satisfies all the following conditions at the same time.

- $f$ is a rational function (this means it is a quotient of polynomials).
- The line $y=1$ is an asymptote of the graph of $f$.
- The line $x=-1$ is an asymptote of the graph of $f$.


## Hyperbolic tangent

The function tanh, defined by

$$
\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

is called the "hyperbolic tangent".

1. Find its two asymptotes
2. Study its monotonicity
3. Study its concavity
4. With this information, sketch its graph.

## Unexpected asymptotes

Find the two asymptotes of the function

$$
F(x)=x+\sqrt{x^{2}+x}
$$

Hint: The behaviour as $x \rightarrow \infty$ is very different from $x \rightarrow-\infty$.

## Backwards graphing

This is the graph of $y=R(x) . R$ is a rational function (a quotient of polynomials). Find its equation.


## A function with fractional exponents

Let $h(x)=\frac{x^{2 / 3}}{(x-1)^{2 / 3}}$. Its first two derviatives are
$h^{\prime}(x)=\frac{-2}{3 x^{1 / 3}(x-1)^{5 / 3}}$

$$
h^{\prime \prime}(x)=\frac{2(6 x-1)}{9 x^{4 / 3}(x-1)^{8 / 3}}
$$

1. Find all asymptotes of $h$
2. Study the monotonicity of $h$ and local extrema
3. Study the concavity of $h$ and inflection points
4. With this information, sketch the graph of $h$
