MAT137

- Today: Even more applications and Outroduction.

Add these series

1. $\sum_{n=0}^{\infty}(-1)^{n} \frac{n+1}{(2 n)!} 2^{n}$
2. Find $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!(n+1)} \quad$ What is $f^{(56)}(0)$?
3. $\sum_{n=2}^{\infty} \frac{n(n-1)}{3^{n}}$

Recall: Challenge

We want to calculate the value of

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}
$$

Hints:

1. Compute $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$
2. Compute $\frac{d}{d x}[\arctan x]$
3. Pretend you can take derivatives and antiderivatives of series the way you can take them of sums. Which series adds up to $\arctan x$?
4. Now attempt the original problem.

Farewell Challenge: division of the stakes

The problem concerns a game of chance with two players who have equal chances of winning each round. The players contribute equally to a prize pot, and agree in advance that the first player to have won 3 rounds will collect the entire prize. Now suppose that the game is interrupted by external circumstances when the score was 2:1. How does one then divide the pot fairly? (Pascal-Fermat, see Wiki)

Farewell Challenge: division of the stakes

The problem concerns a game of chance with two players who have equal chances of winning each round. The players contribute equally to a prize pot, and agree in advance that the first player to have won 3 rounds will collect the entire prize. Now suppose that the game is interrupted by external circumstances when the score was 2:1. How does one then divide the pot fairly? (Pascal-Fermat, see Wiki)

Exercise:

a) Same question for the score $2: 0$;
b) Same question for the score 1:0.

Farewell Challenge: division of the stakes

The problem concerns a game of chance with two players who have equal chances of winning each round. The players contribute equally to a prize pot, and agree in advance that the first player to have won 3 rounds will collect the entire prize. Now suppose that the game is interrupted by external circumstances when the score was 2:1. How does one then divide the pot fairly? (Pascal-Fermat, see Wiki)

Exercise:

a) Same question for the score $2: 0$;
b) Same question for the score 1:0.

Note: This problem was the origin of Pascal's triangle. The answer: if one player needs r points to win and the other needs s points to win, the correct division of the stakes is in the ratio: (sum of the first s entries):(sum of the last r entries) in the line of length $r+s$ in Pascal's triangle.

Recall a party trick: How Calculate The Day Of The Week For Any Date in 2023? (after John Conway)

"Doomsday" = The Day Of The Week for March 0
$=$ Feb. 28 or Feb. 29 (for leap years)

Recall a party trick: How Calculate The Day Of The Week For Any Date in 2023? (after John Conway)

"Doomsday" = The Day Of The Week for March 0
$=$ Feb. 28 or Feb. 29 (for leap years)
In 2023 Doomsday is Tuesday (Feb.28).

Recall a party trick: How Calculate The Day Of The Week For Any Date in 2023? (after John Conway)

"Doomsday" = The Day Of The Week for March 0
$=$ Feb. 28 or Feb. 29 (for leap years)
In 2023 Doomsday is Tuesday (Feb.28).
Then $4 / 4,6 / 6,8 / 8,10 / 10,12 / 12$ are also Doomsdays (=Tuesdays in 2023) (why?)

Recall a party trick: How Calculate The Day Of The Week For Any Date in 2023? (after John Conway)

"Doomsday" = The Day Of The Week for March 0
$=$ Feb. 28 or Feb. 29 (for leap years)
In 2023 Doomsday is Tuesday (Feb.28).
Then $4 / 4,6 / 6,8 / 8,10 / 10,12 / 12$ are also Doomsdays (=Tuesdays in 2023) (why?)
Also Doomsdays are $5 / 9,9 / 5,7 / 11,11 / 7$.

Recall a party trick: How Calculate The Day Of The Week For Any Date in 2023? (after John Conway)

"Doomsday" = The Day Of The Week for March 0
$=$ Feb. 28 or Feb. 29 (for leap years)
In 2023 Doomsday is Tuesday (Feb.28).
Then $4 / 4,6 / 6,8 / 8,10 / 10,12 / 12$ are also Doomsdays
(=Tuesdays in 2023) (why?)
Also Doomsdays are $5 / 9,9 / 5,7 / 11,11 / 7$.
Pi Day 3/14 is also a Doomsday.
Finally, Tuesdays are Feb. 0 (=Jan.31) and Jan. 3 in 2023.
(In leap years, Doomsdays are Feb.29, Feb. 1 (=Jan.32), and Jan.4.)
Watch this video

What to read next?

1. Many remarkable stories on Newton and Leibniz:

Vladimir Arnold: Huygens and Barrow, Newton and Hooke: pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals 1990.
2. Many challenging puzzles and problems (many of them are very hard!):

Vladimir Arnold: Problems for children from 5 to 15

