
Calculus on Manifolds
Sergei Yakovenko

Abstract. These are the lecture notes slightly revised and up-
dated compared to the previous version of about a year ago.

They are highly informal and were aimed to be a supplement to
more traditional expositions (see the list of recommended sources,
mostly perennial classics). Lots of statements are on purpose for-
mulated in a rather vague form stressing the principal features
while sweeping under the carped technical and obscuring details
(the devil is always in details, but can be ignored on the first date).

In essence, they introduce and motivate the algebra that is be-
hind rather natural geometric constructions.

Date: 2017/8 academic year.
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1. Introduction. Crash course on the Multivariate
Calculus

1.1. Linear algebra. Field of real numbers R, its origin (from N,Z
and Q) and completeness. Real line R1 and real spaces Rn. Linear
functionals, linear maps. Compositions. Rank. Group GL(n,R), de-
terminant. Linear algebra as a universal paradigm. Matrix algebra
vs. coefficients: vectors as single elements rather than collections of
numbers; A as a “box” (operator) vs. A =

(
aij
)
, the table filled by

numbers. Product = composition of operators.

Warning 1.1. Other types of matrices occur: e.g., matrices of bilin-
ear/quadratic forms. For them, multiplication is much less “justified”,
if at all.

Dual space. How to plot vectors and covectors. Second dual, tensor
product.

Affine space Rn: no origin selected. Affine maps.

1.2. Nonlinear objects. Polynomials, polynomial maps. Domains.
Functions of real variable, maps between real spaces. Algebraic closure
C, its miraculous properties.

Definition 1.1. Differential (noun) = “linear” (in fact, linear part of
the affine) approximation of a given nonlinear map at a given point
a ∈ Rn.

f : Rm → Rn, f(x) = f(a) + A(x− a) + o(|x− a|), (1)

the “o small” being the term small relative to the terms explicitly
written. Here A is a linear operator, a.k.a. “matrix”,

A =
∂f

∂x
(a) = f ′(a) = f∗(a) = df(a) = Daf =


∂f1
∂x1

· · · ∂f1
∂xm

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xm

 = · · ·

Warning 1.2. The notation of partial derivatives is ambiguous: fx =
∂f(x,y)
∂x

depends on which variable is chosen as y!

Definition 1.2. Differentiable maps (functions) = maps which admit
approximation as above. One can use several iterative constructions to
introduce maps which are differentiable several times. One (not very
good) way is to require existence of iterated partial derivatives.

Smooth maps = infinitely differentiable maps (functions). All poly-
nomials, exponentials and trigonometric functions are smooth, but
there are much more of them than meets an eye.
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Smoothness threads through composition according to the chain rule,
d(f ◦ g)(a) = df(b) · dg(a), where b = g(a).

Remark 1.1. Existence of differentiable maps (functions) is a non-
trivial circumstance which is often obscured by the fact that all poly-
nomial, rational and algebraic maps are differentiable. This creates a
false impression that “almost all” functions are differentiable, which is
plain wrong. Most dynamic processes in our world, with a few happy
exceptions in celestial mechanics, are non-differentiable.

1.3. Tangent vectors. To be consistent with the linearity condition
in (1), one has to identify the two linear spaces between the linear map
A acts. These are called tangent spaces.

Definition 1.3. A tangent vector to the domain U ⊆ Rn at a point
a ∈ U is the pair (a, v), where v ∈ Rn is a vector. The union of all
vectors tangent to U at a is denoted by TaU ; it is isomorphic to Rn.

The union TU =
⋃
a∈U TaU is called the tangent bundle to U . As long

as we talk about subdomains of Rn, we obviously have TU = U × Rn,
that is, an open subspace of R2n, but for general manifolds it is not
true.

One could think of a tangent vector as a “free” vector from Rn pinned
down at the point a. Note that two tangent spaces at two different
points are disjoint.

Using this notion, the difference x − a in (1) can be identified with
a vector v from TaU . In the same vein the image Av is identified with
the vector tangent to TbV , b = f(a). This is the convention that will
be always in place.

Definition 1.4. Diffeomorphism f : U → V for U, V ⊂ Rn is a one-
to-one smooth map whose set theoretic inverse f−1 : V → U is also
smooth.

Theorem 1.1 (Inverse function theorem). If f is a smooth map and its
differential at an interior point a ∈ U is invertible, than there is a small
neighborhood (U, a) ⊆ Rn such that f is a diffeomorphism between this
neighborhood and its image.

Proof. Assume that the differential is an identity matrix and a = 0, so
f(x) = x+h(x), where h is a vector function with all partial derivatives
vanishing at the origin. We look for solution of the equation y =
x + h(x) in the form x = y + g(y). Plugging it into the equation, we
see y = y + g(y) + h(y + g(y)), that is, g(·) = −h(·+ g(·)).

Thus g is a fix point for an operator ψ 7→ −h ◦ (id +ψ) on a suitable
space of functions (that has to be properly described, of course). This
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operator is very strongly contracting on the space of smooth functions
defined on a sufficiently small neighborhood of the origin. �

1.4. Dimension one: a notable exception. The strategic difference
between functions and maps comes from the fact that R has the struc-
ture of a field and also that one-dimensional linear space over itself. In
general, Rn has no extra algebraic structure except for that of a linear
R-space.

Notable exceptions: n = 2: R2 ' C is also a field; n = 4: R4 is a
non-commutative body of quaternions; n = 8: non-associative Caley’s
octonions.

For metaphysical purposes we will sometimes try to distinguish ex-
plicitly between the real line R1 as a linear one-dimensional space over
the field R and the field itself. In other words, elements of R1 are
forbidden to multiply between themselves, only by elements from R.
To stress the difference, we will sometimes use the notation Rfield. In
particular, Rfield contains a distinguished element 1 (the multiplicative
unity) which will be denoted by 1.

Warning 1.3. The linear map between two one-dimensional spaces
in coordinates is a (1 × 1)-matrix with a single element. Such ma-
trix can be identified with the numeric value of this element. This
allows to say that the differential of a smooth map f : R1 → R1 at a
point a “is” the number, called the derivative of f at a and denoted
f ′(a). This identification provides the context in which the derivative
of such a function is again a function f ′ : a 7→ f ′(a) of the same type,
hence the operation of derivation can be iterated, giving rise to higher
derivatives. This is important as one can use this construction to de-
fine inductively functions which are differentiable any finite number of
times, infinitely-differentiable functions etc. Doing this for maps be-
tween higher-dimensional domains is much more technically involved.

1.5. Smooth functions. Let U ⊆ Rn be an open domain (connected
open set). We can considerall real-valued smooth (= infinitely differ-
entiable) functions in U , which constitute an R-algebra, i.e., a linear
(infinite-dimensional) topological space C (U) over the field R with the
multiplication operation (sometimes we will use the more verbose no-
tation C∞(U) instead of C (U) or just C ).

It is the special property of functions: since R = Rfield is a field, func-
tions can be not only added between themselves, but also multiplied
(and sometimes divided).

Remark 1.2. For a smooth function its differential df at a point
a ∈ U is a linear map from TaU ' Rn to Tf(a)R1 ' R1. If we identify
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(tautologically) R1 with Rfield, then the differential becomes an element
of the dual vector space T ∗aU ' (Rn)∗.

1.6. Curves. A curve (more precisely, a parameterized curve) is a map
γ : U → V ⊆ Rn, where U ⊆ R1 is an open connected subset of the real
line. The image γ(U) is the non-parameterized curve. The differential
is a linear map dγ(a) : TaU → Tγ(a)V . The image v(a) = dγ(a)1 is a
vector v ∈ Tγ(a)V ' Rn, called the velocity vector at the point b = γ(a).

We will often interpret the coordinate on R1 as time and denote the
velocity by the dot, v(t) = γ̇(t).

If γ̇(a) = v ∈ TaU , we say that the curve γ is tangent to the vector
v at the point a.

2. Vector fields on Rn and what they are good for

2.1. Vector fields and ordinary differential equations. A vector
field in a domain U ⊆ Rn is a (smooth) map X : U → TU such that
X(a) ∈ TaU for all a ∈ U . Speaking plainly, this is a collection of
vectors attached to all points of U , which vary differentiably (smoothly)
on the point. The set of all vector fields will be denoted by X (U).

Given a vector field, one can look for:

• a curve tangent to v = X(a) at a given point a ∈ U ;
• a curve, tangent to all vectors v(γ(t)) at each moment t;
• a family of curves tangent to all vectors at all points in U .

The first task is elementary: it suffices to take the curve γ(t) = a+tv,
a ∈ U , v = X(a) ∈ Rn. The second task amounts to finding solution
to a system of ordinary differential equations with a specified initial
condition.

Theorem 2.1 (Main existence and uniqueness theorem for ODEs). If
X ∈ X (U) is a smooth vector field, then for any point a ∈ U there
exists a unique smooth curve γa : (R, 0)→ (U, a) which is tangent to the
vector X(γ(t)) at each point γ(t), t ∈ (R, 0), and satisfies the “initial
condition” γ(0) = a.

This curve is unique in the sense that any other solution γ̃a coincides
with γa on a sufficiently small neighborhood of the origin.

As a function of a and t, the curve γ is smooth.

Proof. In coordinates x = (x1, . . . , xn) the vector field X is given by a
tuple of smooth functions (v1(x), . . . , vn(x)), and a curve γ : t 7→ x(t)
tangent to X by a tuple of functions (x1(t), . . . , xn(t)). The tangency
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condition is expressed as the system of identities

dxi(t)

dt
= vi(x1(t), . . . , xn(t)), x(0) = a, i = 1, . . . , n.

Now go to your favorite textbook on ODE’s or apply the contracting
map principle to the Picard approximations which send an arbitrary
smooth curve x(·) such that x(0) = a to the new curve

y(t) = a+

∫ t

0

v(x(τ)) dτ, t ∈ I = [−ε, ε] ⊆ R1.

(Prove that this Picard map is contracting if ε > 0 is small enough). �

Warning 2.1. If U is bounded, then any solution can be extended
to a curve which crosses the boundary of U . For unbounded domains
the domain of definition of γ may be smaller than R (explosion of
solutions). For instance, if v(x) = x2, then the solution with x(0) = 1
exists only on finite interval. Find it by solving the equation dx

dt
= x2

explicitly.
If X is not smooth enough, solution can be non-unique. For instance,

the equation ẋ =
√
|x| on R1 has at least two solutions with x(0) = 0,

which vanish identically for t 6 0. One is the identical zero, the other
is positive, x(t) = 1

2
t2 for t > 0. Find all solutions and describe their

smoothness.

If we replace a field X ∈X (U) by the field X̃ = λX, λ ∈ Rfield, then
one can easily integrate the new equation by setting γ̃a(t) = γa(λt). In

the more general case X̃ = ϕX, ϕ ∈ C (U), one can also find solutions
by an integration. In particular, if ϕ > 0, then the images of the curves
γa and γ̃a locally coincide.

2.2. Flows of vector fields. One can consider simultaneously all in-
tegral curves of a vector field X ∈X (U) through all points of U . It is a
map of the (subset of the) Cartesian product R×U into U , which sends
the pair (t, a) into the point γa(t) of the curve γa which satisfies the ini-
tial condition γa(0) = a. (We assume that such curve can be extended
to the point t ∈ R). We will denote this map FX : (t, a) 7→ F t

X(a) for
the following reason.

Proposition 2.1. Assume that both b = F t
X(a) and c = F s

X(b) are
defined for some a ∈ U and t, s ∈ R. Then F t+s

X (a) is also defined, and

F s
X(F t

X(a)) = F t+s
X (a).

We will often omit the indication of X if the field is clear from the
context.
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Proof. It follows from the existence and uniqueness of integral trajec-
tories. �

Assuming that the field X and domain U are so nice that the flow F t

is defined for all t ∈ R as a smooth self-map of U , the above proposition
means that

F t ◦ F s = F s+t = F s ◦ F t, F 0 = id.

In other words, the collection {F t
X : t ∈ R} is a commutative subgroup

of the group Aut(U) of smooth self-diffeomorphisms of U .
The map FX : R × U → U is smooth. Its differential can be im-

mediately computed at all points (0, a): it takes the vector (1, 0) ∈
T(1,a)R × U to v = X(a) ∈ TaU and all vectors (0, v) into v (“identi-
cally”).

2.3. Rectification theorem. Assume that the vector v = X(a) ∈
TaU ' Rn is nonzero. Then one can find a complementary (n − 1)-
dimensional subspace Π ⊂ TaU such that v /∈ Π.

Consider the restriction of the flow map FX on R × a + Π ⊂ R ×
U . This is a smooth map between two n-dimensional spaces. The
above computation shows that the differential of this restriction is non-
degenerate (in particular, surjective) linear map.

By the Inverse Function Theorem this map is locally invertible. This
means that there exists a small neighborhood (U, a) such that every
point x from this neighborhood is representable as F t(y), t ∈ (R1, 0),
y ∈ Π ' Rn−1.

If we use (t, y) as the new coordinates near U , then in these co-
ordinates the flow map takes the simplest form F s(t, y) = (s + t, y).
Trajectories are straight lines parallel to the t-axis. The correspond-
ing vector field is given by the vector-function (1, 0, . . . , 0) which is
constant (independent of the point).

2.4. Canonical representation. Algebras and morphisms. It is
very convenient in parallel with the geometric study of maps, curves,
vector fields etc., to study infinite-dimensional but linear objects.

The main object associated with a domain U ⊆ Rn is the commuta-
tive R-algebra C (U) of C∞-smooth functions in U . This algebra with
the R-linear operations, the pointwise multiplication of functions, can
be equipped by several topologies (depending on whether U is bounded
or not). This algebra will be referred to as the structural algebra of U .

If F : U → V is a smooth map, then it defines a map of algebras
F ∗ : C (V ) → C (U) (note the direction change) which is a continuous
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homomorphism of algebras. The isomorphism takes g ∈ C (V ) into
F ∗g = g ◦ F ∈ C (U).

The correspondence F 7→ F ∗ is functorial, in particular, if F : U → V
and G : V → W , so that G◦F : U → W , then (G◦F )∗ : C (W )→ C (U)
is the composition, (G◦F )∗ = F ∗G∗ (traditionally, for linear operators
we omit the sign of composition ◦, replacing it by the null symbol for
“matrix” multiplication). Note the inversion of the order!

Consequently, if F is a diffeomorphism between U and V , then F ∗

is an isomorphism of algebras. In this case, (F−1)∗ = (F ∗)−1.
Conversely, any continuous homomorphism A : C (V ) → C (U) is

induced by some smooth map F , so that A = F ∗.

Proof. Consider the coordinate functions yi ∈ C (V ) and look at the
map F = (f1, . . . , fn), where fi = Ayi. By homomorphy, Au = F ∗u for
all polynomials u ∈ R[y1, . . . , yn]. Since polynomials are dense, F = f ∗

on all functions. �

2.5. Vector fields as derivations. If U ⊆ Rn and X ∈ X (U) is a
smooth vector field, then any function ϕ : U → R can be differentiated
along X producing a new function, denoted sometimes Xϕ, sometimes
LXϕ ∈ C (U).

Definition 2.1. The Lie derivative of a smooth function ϕ ∈ C (U)
along X ∈ X (U) is a function Xϕ whose value at any point a ∈ U is
the derivative

Xϕ(a) =
d

dt

∣∣∣∣
t=0

ϕ(F t
X(a))

Using the chain rule of derivation, we compute derivatives along the
curve γ(t) = F t

X(a):

d

dt

∣∣∣∣
t=0

ϕ(γ(t)) =
n∑
i=1

∂ϕ

∂xi
(a) · dxi(t)

dt

∣∣∣∣
t=0

=
n∑
i=1

∂ϕ

∂xi
(a) vi(a).

This implies that:

• The value Xϕ(a) depends only on the vector v = X(a), and
depends in a linear way;
• As an operator X : C (U) → C (U), is an R-linear operator

which satisfies the Leibniz rule,

X(ϕψ) = ϕ · (Xψ) + ψ · (Xϕ). (2)

Conversely, if L : C → C is an R-linear self-map of C to itself, which
satisfies the Leibniz rule L(ϕψ) = ϕ · Lψ + ψ · Lϕ, then L is a Lie
derivative along a suitable vector field X.
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Indeed, by the Leibniz rule L1 = L(1 · 1) = 2L1, so L1 = 0 and by
linearity Lλ = 0 for any constant λ ∈ R.

Let vi(x) be the L-images of the coordinate functions, vi = Lxi,
xi ∈ C . We show that the vector field X with such coordinates indeed
acts on an arbitrary function ϕ at an arbitrary point as L acts, Lϕ(a) =∑
vi(a) ∂ϕ

∂xi
(a).

By the Hadamard formula which allows to represent each smooth
function ϕ, say, near the origin under the form

ϕ(x) = ϕ(a) +
n∑
i=1

(xi − ai)ϕi(x), ϕi ∈ C , ϕi(a) =
∂ϕ

∂xi
(a).

Applying L to this expression and using again the Leibniz rule, we
conclude that

(Lϕ)(a) = 0 +
n∑
i=1

(
(Lxi(x)− 0)ϕi(a) + 0 · (Lϕi)(a)

)
= (Xϕ)(a).

Lie derivations (first order differential operators on C = C (U), sat-
isfying the Leibniz rule) form a module over the algebra C : they can
be added between themselves and multiplied by functions from C . In a
given coordinate system the basis of this module can be chosen as the
(standard partial) derivations Xi = ∂

∂xi
which act on the coordinate

functions in the predictable way, Xixj = δij. Any other vector field
can be then expanded as X =

∑
viXi =

∑
xi

∂
∂xi

. This is a standard
practice to denote vector fields.

2.6. Commutator. Although derivations from X (U) take the alge-
bra C (U) into itself as R-linear operators and hence can be composed
with each other, the composition in general will not satisfy the Leibniz
rule. Indeed, for X, Y ∈X (U) and ϕ, ψ ∈ C (U), we have

XY (ϕψ) = X(ϕ·Y ψ+ψ·Y ϕ) = Xϕ·Y ψ+ϕ·XY ψ+Xψ·Y ϕ+ψ·XY ϕ.

The terms Xϕ·Y ψ+Xψ ·Y ϕ thwart the Leibniz rule for XY . However,
if we consider the differenceXY−Y X, the obstructing terms will cancel
each other, and the operator Z = XY −Y X is again a derivation (i.e.,
an operator of the first rather than second order).

Definition 2.2. The commutator of two vector fields X, Y ∈ X (U)
is the vector field associated with the derivation [X, Y ] = XY − Y X.

Remark 2.1. The same fact can be derived from the first year calculus
assertion (“Clairaut theorem” or “Schwarz theorem”) that the second
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partial derivatives do not depend on the order, so that[
∂

∂xi
,
∂

∂xj

]
= 0.

2.7. Flows and fields in the canonical representation. The re-
lationship between a field X ∈ X (U) and the respective flow {F t

X ∈
Aut(U) : t ∈ R} is expressed by the formula

dF t
X(a)

dt

∣∣∣∣
t=0

= X(a) ∈ TaU,

the left hand side being the interpreted as the velocity vector of the
smooth curve t 7→ F t

X(a) at the point a, the right hand side as the
tangent vector to U at a.

Assume we are guaranteed that the flow is well defined as a family
of self-maps of U and hence we have a one-parametric family of au-
tomorphisms {(F t

X)∗ : t ∈ R} of the algebra C (U). Then for any
test function ϕ ∈ C (U) we have a one-parametric family of func-
tions {ϕt = (F t

X)∗ϕ : t ∈ R} and can compute the (partial) derivative
dϕt

dt

∣∣
t=0

. The answer is not surprising: the derivative is equal to Xf .
In other words, we have the identity between the linear operators on
C (U),

d

dt

∣∣∣∣
t=0

(F t
X)∗ = X.

If the algebra C (U) were finite-dimensional, we would have a one-
parametric group of linear operators {Bt} such that d

dt
|t=0 = A is a

linear operator called the generator. The well-known theory of linear
systems provides an explicit formula for recovering the family {Bt}
from the given operator A:

Bt = exp(tA) = E + tA+ t2

2!
A2 + · · ·+ tn

n!
An + · · ·

Leaving aside the issue of convergence of the series, this formula justifies
the notation

(F t)∗ = exp tX

as the identity between the operators on C (U).

Example 2.1. Assume that U = R1 and X = ∂
∂x

. The corresponding
differential equation is trivial, ẋ = 1. The flow map is also easy to
compute: (F t)∗ϕ(x) = ϕ(x + t). The above identity then takes the
form

ϕ(x+ t) = ϕ(x) + tϕ′(x) + t2

2!
ϕ′′(x) + · · ·+ tn

n!
ϕ(n)(x) + · · · .
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It holds for all analytic functions ϕ ∈ C (U), but in general fails. Yet
the mnemonic helps anyway and may be turned into meaningful com-
putations if we replace functions by their finite order jets at a given
point.

2.8. Action of diffeomorphisms on vector fields. Let F : U → V
be a smooth map. How it acts on vector fields?

Geometric push-forward. Suppose X ∈X (U) is a vector field is on U .
Take an arbitrary point a ∈ U and consider a curve γa : (R1, 0)→ (U, a)
passing through a and tangent to v(a). The push-forward ηb = f∗γa
will be a smooth curve in V passing through b = f(a). We can attach
its velocity vector w = η̇b to the point b ∈ V and call it the push-
forward” of v = X(a) by F . Bad news: if F is not surjective, then the
push-forward is not everywhere defined, and if the preimage F−1(b)
consists of more than one point, then more than one vector can be
obtained this way.

Easy computation shows that w = dF (a) · v.

Algebraic push-forward. We need to construct a Lie derivation of C (V )
which becomes the Lie derivative X on C (U) after the pull-back F ∗.
This is straightforward: for any ϕ ∈ C (V ) consider ψ = F ∗ϕ and apply
X. The resulting operator C (V ) → C (U) will satisfy the Leibniz
rule as required, but we need to get back to C (V ). In general it is
impossible, but if F is a diffeomorphism, then we can use its inverse
F−1 to to the job and define Y : C (V )→ C (V ), Y = (F−1)∗XF ∗. As
it satisfies the Leibniz rule, Y is the Lie derivative associated with a
vector field on V .

The push-forward Y of the vector field X by a diffeomorphism F
is denoted Y = F∗X. By construction, F ∗Y = XF ∗ as operators
C (V )→ C (U). The two Lie derivations are conjugated by an isomor-
phism F ∗ in the “linear algebraic” sense. Moreover, the latter equation
may be satisfied even for non-invertible smooth maps, if X is special
enough: in this case the two vector fields are said to be F -related.

Example 2.2. Think of a projection F : R2 → R1 on the horizontal
axis and a vector field X whose horizontal component is independent
of the vertical coordinate.

2.9. Local nature of homomorphisms and derivations. The rings
C (U), as contrasted to rings of polynomial functions, contain cutoff
functions. A cutoff function for a point a ∈ U by definition is a function
χ that is identically equal to 1 in some neighborhood (U, a) and vanishes
identically outside the twice bigger neighborhood.
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Theorem 2.2. If L is a Lie derivation of C (U) associated with a vector
field X, then for any two functions ϕ, ψ which coincide in some open
neighborhood of a point a ∈ U , the functions Lϕ and Lψ also coincide
in a small neighborhood of a. In other words, values of Lϕ near a do
not depend on the behavior of ϕ away from a.

Proof. The difference ϕ − ψ vanishes in a neighborhood of a. Let χ
be a cutoff function which is ≡ 1 near a, ≡ 0 outside and such that
χ(ϕ−ψ) ≡ 0 everywhere. Applying L we conclude that 0 ≡ (Lχ)(ϕ−
ψ)+χ(Lϕ−Lψ). Since the first term is zero near a and χ is one there,
we get vanishing Lϕ− Lψ. �

Remark 2.2. This construction is a cheap trick that allows to modify
a vector field X ∈X (U) so that it will be unchanged near each specific
point a ∈ U but the modified vector field will have the flow map to
be defined as a self-map of U , thus avoiding any problems with the
domain of definition.

It suffices to replace X by the field χX, where χ ∈ C (U) is a smooth
function identically equal to 1 near a and vanishes identically outside
some (larger) neighborhood of a.
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3. Manifolds

Morally, manifolds are topological spaces which locally look like open
balls of the Euclidean space Rn.

One can construct them by piecing together such balls (“cells”) using
smooth maps identifying points in the overlaps.

Example 3.1. Circle, cylinder, torus.
Cube made of its unfolding. Appearance of corners.
Don’t forget the flaps!

However, it is technically more convenient to proceed in the opposite
direction.

3.1. Formal definition.

Definition 3.1. A (differentiable) manifold M is a Hausdorff second-
countable topological space equipped with a family (“atlas”) of mutu-
ally agreeing charts covering the whole of M .

A chart is a homeomorphism x : U → Rn from an open domain
U ⊆ M and a ball in the Euclidean space Rn. The value x(a) =
(x1(a), . . . , xn(a)) is called as coordinates of the point a ∈M

Two charts x : U → Rn and y : V → Rn defined on the overlapping
domains U ∩ V 6= ∅ are said to agree on the intersection, if the tran-
sition map y ◦ x−1 : x(U ∩ V ) → Rn is a C∞-smooth diffeomorphism
(between domains in Rn), ditto x ◦ y−1.

The number n (necessarily the same for all charts) is called the di-
mension of the manifold.

Warning 3.1. Formally, the same space can be covered by charts in
many different ways, producing different atlases. However, the corre-
sponding smooth structures may coincide. This happens when charts
from different atlases can be shuffled together without creating dis-
agreements. To play safe, one should take the maximal (in the Zorn
lemma sense) atlas of mutually agreeing charts.

In practice we will always deal with finite or at most countable at-
lases.

Remark 3.1. The topological constraints are imposed to exclude patho-
logical examples like a line with two zeros, huge spaces etc.

3.2. Examples. Euclidean spaces and their open domains with atlases
of trivial charts.

Subspaces of the Euclidean spaces of smaller dimension (via the Im-
plicit Function theorem). Spheres.
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Quotient spaces. Tori. Projective spaces.
Linear groups. Orthogonal and Special Orthogonal groups.
Cartesian products.
Configuration spaces of mechanical systems.
What is not a manifold? Topological and analytic obstructions.

3.3. Chart-wise approach to working on manifolds. Assume that
we are given a smooth manifold with an atlas of charts xα : Uα → Rn,
α ∈ A (the atlas may be finite or even uncountable, what’s important
is that it is self-consistent). Let Fαβ = xβ ◦ x−1

α the transition maps,
α, β ∈ A.

Definition 3.2. A function f : M → R is called C∞-smooth (or simply
smooth) on M , if all compositions fα : f ◦ x−1

α , α ∈ A, are C∞-smooth
on the domains Dα = xα(Uα) ⊆ Rn.

We write then that f ∈ C (M).
Any function f ∈ C (M) can be thus be “recorded” by a collection of

functions {fα(xα)}α∈A, defined in the domains xα ∈ Dα, and related by
the appropriate identities in Dαβ = xa(Uα∩Uβ) and Dβα = xβ(Uα∩Uβ):

fα ◦ Fβα = fβ on Dαβ ∀α, β ∈ A.

The analogous definition for tangent vectors and vector fields has to
be even less intuitive. Unlike the abstract notion of a real-valued func-
tion which can be defined on any set, there is no abstract notion of a
vector tangent to a topological space, thus the key element in the con-
struction disappears. The best one can do is an artificial construction
as follows.

Definition 3.3. A tangent vector to a manifold M at a point a ∈ M
is a collection of vectors {vα ∈ Rn : α ∈ A} attached at the points
xα(a) ∈ Dα, which are agreeing between themselves in the following
sense:

vβ = dFαβ(xα(a)) · vα, if a ∈ Dαβ.

The set of all tangent vectors at a point a is denoted by TaM .

Each chart xα provides an isomorphism between TaM , a ∈ M , and
Rn. The (disjoint) union of all tangent spaces is denoted TM . The
above formula is in fact the hidden definition of the structure of a
smooth manifold on TM . It consists of the atlas of charts on Uα×TUα
with the transition functions given by the pairs

(xα, vα) 7→ (xβ, vβ), xβ = Fαβ(xα), vβ(xβ) = (dFαβ)(xα) · vα(xα).

Definition 3.4. A vector field on a manifold M is a smooth map
X : M → TM such that X(a) ∈ TaM .
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One can associate with any X ∈X (M) a collection {Xα ∈ Dα}α∈A
of vector fields in Dα, which are related by the corresponding formulas.

This line of definitions leads to the idea of a tensor, generalizing that
of a tangent vector. The tensors are “collection of numbers associated
with each chart. which are transformed according to certain rules”.
Axiomatizing the computation rules is a cheap way to circumvent the
inconvenient questions about the nature of the things. “The method
of postulating what we want has many advantages; they are the same
as the advantages of theft over honest toil” (Bertrand Russell, 1919).

3.4. Geometric attempt. Another attempt to define the notion of a
tangent vector is via smooth curves on the manifold.

Definition 3.5. A map γ : (R, 0) → M is a smooth (parameterized)
curve on a manifold M , if its images γα = xα ◦ γ are smooth curves in
Dα for all α ∈ A.

Two curves γ, η are mutually tangent at a point t = 0, if ‖γα(t) −
ηα(t)‖ = o(|t|) for some (hence, for all) charts covering a.

Definition 3.6. A tangent vector at a point a ∈M is the equivalence
class of curves as above.

Looking at the same curve at different charts, one can verify that
this definition leads to the same object(s). A vector field as a family of
tangent vectors smoothly dependent on the attachment point can be
easily formalized.

However, this approach makes it highly non-obvious why the col-
lection of all tangent vectors at the same point has th structure of a
linear (vector) space. This can be proved by computation, OK, but
remember about of “theft vs. toil”.
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4. Constructions on manifolds

4.1. Points, curves, functions.

Definition 4.1.
Manifold : a Hausdorff second-countable (not too large) topological

space, equipped with a self-consistent atlas of local charts.
Local chart : a homeomorphism x : U → B between an open subspace

U ⊆M and an open ball B ⊆ Rn.
Self-consistent atlas : collection of charts {xα : Uα → Bα}, such that

all transition maps Fαβ = xα ◦x−1
β are diffeomorphisms in their natural

domains Bαβ = xβ(Uαβ), Uαβ = Uα ∩ Uβ.

Example 4.1. Euclidean spaces of all dimensions are smooth mani-
folds with atlases consisting of single chart each.

Definition 4.2. A continuous map F : M → N between two manifolds
is smooth if for any local charts xα on M and yβ on N the composition
yβ ◦F ◦x−1

α is C∞-smooth as a map between two balls of the respective
Euclidean spaces.

A smooth function is a continuous function f : M → R such that the
composition f ◦ x−1

α is smooth in each chart xα.
A smooth curve on M is a map γ : R1 → M such that xα ◦ γ is

smooth.

Example 4.2. If we fix a local chart, then x = (x1, . . . , xn) ∈ Rn, can
be used to denote a point in M (with the corresponding coordinates
in B). Then smooth function becomes an explicit expression of n real
variables f(x) = f(x1, . . . , xn). In the same way a smooth curve is
defined by a smooth vector function γ = x(t) = (x1(t), . . . , xn(t)).

4.2. Structural algebra.

Definition 4.3. The commutative algebra C = CM = C∞(M) of
smooth (scalar) functions on M is called the structural algebra of M .

Definition 4.4. For any smooth map F : M → N the pullback of F if
the map between the structural algebras

F ∗ : CN → CM , g 7→ f = F ∗g = g ◦ F, f(x) = g(F (x)).

Note the inversion of the direction.

Proposition 4.1. The map F ∗ is a morphism between the algebras: it
is an R-linear maps which preserves the multiplication:

F ∗(g1g2) = F ∗g1 · F ∗g2.
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In the linear algebra it is customary to omit braces around the ar-
gument and write Ax rather than A(x) to denote the value taken by A
on the vector x. We shall stick to this notation.

4.3. Tangent vectors. Let a ∈M be a point.

Definition 4.5. Two curves γ, γ′ : (R1, 0) → M are tangent to each
other at a, if γ(0) = γ′(0) = a, and in any chart x we have

(x ◦ γ)(t)− (x ◦ γ′)(t) = o(t) as t→ 0.

Remark 4.1. In general, points of the manifold cannot be added (or
subtracted) between themselves. The above definition uses the fact
that the subtraction is well defined in Rn.

One can instantly see that this definition is independent of the choice
of the chart x and is indeed an equivalence relation (reflexive, transitive
and symmetric).

Definition 4.6. The tangent space TaM at a point a ∈ M is the set
of equivalence classes of smooth curves through a.

The tangent bundle is the disjoint union of all tangent spaces,

TM =
⊔
a∈M

TaM.

Remark 4.2. In coordinates any smooth curve is represented by the
parametric expression γ(t) = (x1(t), . . . , xn(t)) with γ(0) = x(a), so
that x(t) = a+ tv + o(t), v = (v1, . . . , vn) ∈ Rn.

However, the above definition defines TaM only as a point set in
one-to-one correspondence with Rn (the correspondence depends on
the choice of the chart). No structure of a vector space is defined yet.

Definition 4.7. Let f ∈ CM and v ∈ TaM a tangent vector represented
by a curve γ : (R, 0)→M , γ(0) = a.

The directional derivative is the number

df

dv
(a) =

d(f ◦ γ)(t)

dt

∣∣∣∣
t=0

.

Using the chain rule, one can easily check that this definition does not
depend on the choice of the curve γ representing v.

The operator

d

dv
: CM → R, f 7−→ df

dv
(a)

is R-linear and satisfies the Leibniz rule,

d(fg)

dv
(a) = f(a) · dg

dv
(a) + g(a) · df

dv
(a)
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This property can be used as a definition of the directional derivative
at a point a.

Definition 4.8. Let a ∈M . A(n abstract) directional derivative is an
operator Xa : CM → R which is R-linear and satisfies the Leibniz rule,

Xa(f + g) = Xaf +Xag, Xa(fg) = f(a)Xa(g) + g(a)Xa(f).

Proposition 4.2. Directional derivatives form a vector space over R:
the sum of directional derivatives again satisfies the above conditions
(ditto λX).

Remark 4.3. If M = Rn, then one can prove (using the Hadamard
lemma) that any abstract directional derivative is a genuine directional
derivative along a certain vector.

Remark 4.4. This proposition allows to equip each TaM with the
structure of a R-vector space, which was difficult to do before.

4.4. Push-forward of tangent vectors. If F : M → N is a smooth
map and a ∈M , then one can define the push-forward

(F∗)a : TaM → TbN, b = F (a),

by two equivalent ways.

Definition 4.9 (Geometric definition). For a tangent vector v ∈ TaM
represented by a smooth curve γ : (R1, 0) → (M,a), the push-forward
(F∗)av is the directional derivative along the smooth curve

F ◦ γ : (R1, 0)→ (N, b), b = F (a).

Of course, independence of the choice of the representative γ has to
be verified.

Definition 4.10 (Algebraic definition). Define the operator

Yb : CN → R, Yb = Xa ◦ F ∗.
Since F ∗ is a morphism of algebras and Xa satisfies the Leibniz rule,
Yb also does.

A trivial exercise is to show that the two definitions are equivalent.

5. Vector fields

5.1. Basic definitions. Intuitively a vector field on a manifold M is
a collection of tangent vector v(a) ∈ TaM attached to each point a,
which depends smoothly on a. The smoothness condition means that
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we deal with a smooth map v : M → TM such that for any a ∈M we
have v(a) ∈ TaM . But then again the problem reduces to equipping
the set TM =

⊔
a∈M TaM with the structure of a smooth manifold.

It is an extremely useful exercise to transform any atlas of smooth
charts on M to an atlas of smooth charts on TM which would make it
into a smooth manifold of dimension 2n. Development of this idea leads
to the very useful notion of a general vector bundle over a manifold.

The algebraic approach is much more straightforward.

Definition 5.1. A smooth vector field on M is a derivation of the
structure algebra CM , i.e., an R-linear operatorX satisfying the Leibniz
rule,

X : CM → CM , X(f · g) = f ·Xg + g ·Xf.

Indeed, evaluationXa at an arbitrary point a ∈M will be an abstract
directional derivative at a.

The set of smooth vector fields on M will be denoted by X (M),
XM or simply X when M is clear from the context.

If F : M → N is a smooth map, then in general F does not allow
to carry vector fields in any direction. There is an exception,
however: if F is a diffeomorphism, then it allows both push forward
and pull-back of vector fields.

Definition 5.2. Let F : M → N be a smooth map, X ∈ X (M),
Y ∈ XN . We say that X and Y are F -related, if F ∗Y = XF ∗, i.e., if
the following diagram is commutative,

CM
F ∗←−−− CNyX yY

CM
F ∗←−−− CN

In particular, if F is a diffeomorphism, then Y = (F ∗)−1XF ∗ ∈ XN

is a push-forward of X ∈ XM , and, inversely, X = F ∗Y (F ∗)−1 is a
pullback of X.

In other words, X, Y are similar (conjugated by an isomorphism F ∗

between the structural algebras). Sometimes we will use the notation

F∗ : XM →XN , F∗X = (F ∗)−1XF ∗,

F ∗ : XN →XM , F ∗Y = F ∗Y (F ∗)−1.

Remark 5.1 (important). For invertible F both push-forward and
pull-back operators enjoy equal “legal status” and can be applied. How-
ever, there is a subtle reason to prefer the pull-back.
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The (infinite-dimensional) R-vector space XM is naturally a CM -
module over the structural algebra of smooth functions: any field X
can be multiplied by a function f producing the field fX. Since for
the structural algebra the pull-back is much more natural operation,
so should be for the fields. Then

F ∗(fX) = F ∗f · F ∗X,

which makes the pull-back into the morphism of modules.

5.2. Flow of vector fields. Let v ∈X = X (M) be a vector field on
a manifold M .

Definition 5.3. The flow of v is a smooth map R×M →M , denoted
by (t, x) 7→ F t(x), such that

d

dt

∣∣∣∣
t=0

F t(x) = v(x) ∀t ∈ R, x ∈M.

If it is necessary to indicate the field, we will write F t
v(x).

Theorem 5.1 (local existence theorem for flows). For any vector field
v and any point a ∈M there exists a neighborhood (R, 0)× (M,a) such
that the flow map as above is defined in this neighborhood,

d

dt

∣∣∣∣
t=0

F t(x) = v(x) ∀t ∈ (R, 0), x ∈ (M,a). �

Remark 5.2. In general, the flow can indeed be defined only locally
on open neighborhoods (R, 0) × (M,a). It is globally defined if M is
compact.

To avoid (mostly, technical) difficulties and simplify the exposition,
we will assume that all flows are globally defined.

Proposition 5.1. Considered as a family of self-maps

{F t : M →M}t∈R,

the flow forms a one-parametric commutative group isomorphic to R,

F t+s = F t ◦ F s = F s ◦ F t ∀t, s ∈ R.

In particular, all maps are invertible (diffeomorphisms),

(F t)−1 = F−t, F 0 = id .

The algebraic construction seems to be more succinct. Note that the
family of automorphisms {(F t)∗}t∈R of the structural algebra CM will
also satisfy the group property.
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Definition 5.4. A one-parametric group {At : CM → CM}t∈R of au-
tomorphisms of the structural algebra is said to be generated by an
operator X, if

d

dt

∣∣∣∣
t=0

At = X,

Applying this operator identity to a test function f at a point a ∈M ,
we see that it is simply the definition of the directional derivative of f
for the special curve γ(t) = F t(a).

It is an elementary calculation to show that X is a derivation, X ∈
XM . Indeed, by the Leibniz rule

X(fg) =
d

dt

∣∣∣∣
t=0

(
At(fg)

)
=

d

dt

∣∣∣∣
t=0

(
Atf · Atg

)
=

d

dt

∣∣∣∣
t=0

Atf · A0g + A0f · d

dt

∣∣∣∣
t=0

Atg = X(f)g + fX(g).

Remark 5.3. The problem of reconstruction of the family {At} from
the derivation X ∈ XM is much more subtle: it is equivalent to the
global integration of ODEs (vector fields) and the result depends on
M . Formally one can use the exponential series and define

At = id +X +
1

2!
X2 + · · ·+ 1

k!
Xk + · · · , t ∈ R,

but the convergence can be justified only for finite-dimensional alge-
bras (or on dense subsets of CM). We will simply use the group of
automorphisms At = (F t)∗ of the structural algebra.

Still this similarity is suggestive enough that some sources denote the
one-parameter group of isomorphisms of the structural algebra, using
the exponential notation,

At = exp tX or At = etX .

6. Lie derivative: yet another object to derive

6.1. Lie derivative of vector fields. Assume now that we have two
vector fields X, Y on the same manifold. Can one define the “direc-
tional derivative” of Y along X in the same way as we defined it for
functions? Voilá.

Definition 6.1. Denote by (F t
X)∗ : XM →XM the family of pull-back

operators associated with the flow of the vector field X.
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We define the directional derivative of Y along X in the most natural
way,

Z = LXY =
dY

dX
=

d

dt

∣∣∣∣
t=0

(F t
X)∗Y.

The two notations, the Lie notation LX and the pseudoclassical nota-
tion dY

dX
will be used in the fully interchangeable way.

By construction, Z is an operator from CM to itself which satisfies
the Leibniz rule. It can be easily computed.

dY

dX
f =

d

dt

∣∣∣∣
t=0

(F t
X)∗Y f =

d

dt

∣∣∣∣
t=0

(
(F t)∗Y (F−t)∗

)
f

=

(
d

dt

∣∣∣∣
t=0

(F t)∗Y − Y d

dt

∣∣∣∣
t=0

(F t)∗
)
f = (XY − Y X)f.

Definition 6.2. The expression XY − Y X is called the commutator,
or the Lie bracket of vector fields X, Y ∈X , and denoted by

[X, Y ] = XY − Y X.
By construction, the commutator is again a vector field, [X, Y ] ∈X .

Remark 6.1. The above identity can be restated as follows,

L[X,Y ] = [LX , LY ], LX , LY , L[X,Y ] Lie derivations of C .

Remark 6.2. This equality is somewhat surprising. First, it is totally
unexpected that

dX

dY
= −dY

dX
,

that is, the role of the two fields is almost symmetric.
Second surprising fact is that the commutator is again a first order

operator: when computing its action on a function, we observe that
the second order derivatives cancel each other and only the first partial
derivatives remain.

This is less surprising if we recall that the Lie derivative of any
object is by construction the object of the same type (we shall see
more examples of this principle)

6.2. Properties of the commutator. The Lie bracket

[ · , · ] : X ×X

is a R-bilinear form which is Leibniz in each argument:

[X, fY ] = [X, f ] · Y + f · [X, Y ],
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where we used the notation [X, f ] for the Lie derivative of f along X,
which is of course the same as the usual Xf .

If Z ∈X is a third vector field and

d
dZ

: X →X , d
dZ
X =

d

dt

∣∣∣∣
t=0

(F t
Z)∗X,

the corresponding Lie derivative, then because of the above bilinearity
we have the Leibniz rule,

d
dZ

[X, Y ] = [ d
dZ
X, Y ] + [X, d

dZ
Y ].

Expressing the Lie derivative as a commutator, we see that

[Z, [X, Y ]] = [[Z,X], Y ] + [X, [Z, Y ]].

This is the Jacobi identity, which is usually formulated (and more easily
memorized) as vanishing of the cyclical sum

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

The “standard” proof of this identity is by replacing each double com-
mutator with four third order operators involving composition ofX, Y, Z
in all possible orders. Altogether we get 12 combinations which exhaust
6 possible permutations, each occurring twice with opposite signs. Of
course, it is impossible to recognize the Leibniz rule in this combinato-
rial rampage.

Remark 6.3. One can also easily check that the identity

[LX , LY ] = L[X,Y ], where [LX , LY ] = LXLY − LYLX ,
valid for the action of Lie derivatives on C , holds also if we consider
the action of both sides on X . This is yet another reincarnation of the
Jacobi identity.

In coordinates, if we denote the Jacobian matrixes of vector fields
v = (v1, . . . , vn) and w = (w1, . . . , wn) by

(
∂v
∂x

)
and

(
∂w
∂x

)
respectively,

then the commutator of X =
∑
vi(x) ∂

∂xi
and Y =

∑
wi(x) ∂

∂xi
will be

the field with the coordinates(
∂v

∂x

)
w −

(
∂w

∂x

)
v.

Remark 6.4 (warning). In the above calculations we used several
times the notation

Lv =
d

dv
or LX =

d

dX
for derivative along the vector field. This allowed to save space, but in
general this may result in confusion.
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If f ∈ C is a smooth function, how the two operators, Lfv and Lv
are related? you might expect one of the two things, either “tensiorial”
behavior whereby Lfv = fLv, or the “Leibniz-type” behavior, whereby
Lfv = f · Lv + (Lvf) · (the second term acts as the multiplication by
the function g = Lvf).

In reality the answer depends on whether Lv is considered on func-
tions (and then the first case occurs) or on vector fields (and then the
second possibility is realized). Later we will describe how Lv acts on
exterior forms, where the answer will take yet another form.

In short, be careful with the Lie derivative!

6.3. Commutator and the flows. If [X, Y ] = 0, then this means
that the flow F t

X preserves the field Y and, reciprocally, F s
Y preserves

X. This means that each of the flows maps a trajectory of the other
vector field to another such trajectory. This means that the two flows
commute,

F t
X ◦ F s

Y = F s
Y ◦ F t

X , ∀t, s ∈ R.
Conversely, if two flows are commuting in the above sense, then their
velocity fields have identically zero commutator.

This observation paves the way to a very useful observation.
Two commuting flows have a common 2-dimensional integral surface:

if at some point the vectors X(a), Y (a) are linear independent, the map

(R2, 0)→M, (t, s) 7→ F t
X ◦ F s

Y (a)

is locally injective and both fields are tangent to its image Sa ⊆ M .
The variables (t, s) can be seen as the local coordinates on Sa, centered
at the point a.

The mutual position of surfaces Sa for different points a can be un-
derstood from the following rectification theorem.

Theorem 6.1 (simultaneous rectification theorem). If X, Y ∈X (R2, 0)
are two commuting vector fields linear independent at the origin, then
there exists a local diffeomorphism which simultaneously rectifies both
fields into two constant fields.

Proof. Assume that the first vector field X is already rectified and in
the new coordinates it has the form ∂

∂x1
. Commutation with this vector

field means that

Y =
n∑
i=1

vi(x)
∂

∂xi
,

∂vi
∂x1

≡ 0.

The linear independence condition implies that the vector
∑n

i=2 vi(0) ∂
∂xi

is nonzero. Consider the diffeomorphism of the space (Rn−1, 0) equipped
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with the coordinates (x2, . . . , xn) which rectifies the field

Y ′ =
n∑
i=2

vi(x2, . . . , xn)
∂

∂xi
∈X (Rn−1, 0).

Extended by the identical transformation of x1-coordinate, this diffeo-
morphism preserves X and rectifies Y . �

Corollary 6.1. Common integral surfaces of two commuting vector
fields locally look like a family of parallel 2-planes in Rn.

Existence of common integral surfaces is called integrability of the
pair of fields. The above result states that tuples of pairwise commuting
vector fields are integrable.

Remark 6.5. Of course, the result is true for any number of k 6 n
pairwise commuting vector fields.

6.4. Frobenius theorem. The condition of commutativity is not nec-
essary for integrability: if two vector fields X, Y are tangent to the same
surface S ⊂M , then one can only claim that [X, Y ] is again tangent to
M (why?), that is, [X, Y ] is in the submodule CM (X, Y ) of the module
X (M) generated by X and Y :

[X, Y ] = fX + gY, f, g ∈ C (M).

Definition 6.3. A tuple of vector fields X1, . . . , Xk ∈X (M) is called
involutive, if the submodule CM (X1, . . . , Xk) generated by them in the
C (M)-module X (M) is closed by the Lie bracket.

Of course, if Xi are commuting, then the Lie bracket is zero on the
pairs of generators and preserves the module. Let M = (Rn, 0) and
assume that X1, . . . , Xk ∈XM are linear independent at the origin.

Theorem 6.2 (Frobenius). If CM (X1, . . . , Xk) is a submodule closed
by the bracket, then locally one can find a system of commuting gener-
ators for the module: there exist Y1, . . . , Yk ∈ CM such that

CM (X1, . . . , Xk) = CM (Y1, . . . , Yk) , [Yi, Yj] = 0.

Proof. We start by choosing a convenient coordinate system. Assume
that the first k coordinates, called “horizonal”, are chosen in such a
way that X1(0), . . . , Xk(0) are the basic vectors. Denote by E1, . . . , En
the coordinate vector fields (commuting between themselves). By as-
sumption,

Xi = Ei +
n∑
j=1

aij(x)Ej, aij(0) = 0.
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One can find a change of the base Yj =
∑k

j=1 hij(x)Xj such that

Yi(x) = Ei +
n∑

j=k+1

bij(x)Ej, i = 1, . . . , k.

Indeed, it is enough to “rectify” only the horizontal coordinates of the
fields X1, . . . , Xk, which is possible by inversion of the k × k-matrix
close to the identity.

Since Ei commute, the commutators [Yi, Yj] should be “vertical”
(their projections on the horizontal coordinates must vanish). On the
other hand, since Xi are in the involution, these commutators should be
also horizontal. This implies that Yi commute between themselves. �
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7. Differential forms

7.1. Modules over the algebra C (M). The space of all (smooth)
vector fields X (M) on a smooth manifold M has the natural structure
of a module over the ring (R-algebra) C (M): this means that besides
being the linear space over R, vector fields can be multiplied by smooth
function, yielding the application

C (M)×X (M)→X (M), (f,X) 7→ fX.

Problem 7.1. Assuming that f > 0, show that the orbits of the flows
F t
fX and F t

X coincide for compact manifolds.

In the same way as any (abstract finite-dimensional) linear space S
has its dual S∗ as the linear space of all linear functionals (covectors)
ξ : S → R equipped with the natural linear operations, one can consider
the dual object to vector fields as a family of covectors a 7→ ξ(a) ∈
T ∗aM , smoothly depending on a.

7.2. Differential 1-forms.

Example 7.1. Let u ∈ C (M) be a smooth function. Then the corre-
spondence

a 7→ ξ(a) = du(a)

defines a linear functional on each space TaM : its value on a vector
v ∈ TaM is the directional derivative of u along v. If we choose a local
chart near a in which v = (v1, . . . , vn), then the functional is

(v1, . . . , vn) 7−→
n∑
i=1

∂ui
∂xi

(a)vi.

Clearly, the correspondence a 7→ ξ(a) is smooth.

Thus the differential du of a smooth function u ∈ C (M) can be
considered as a R-linear map

du : X (M)→ C (M), du(fX) = f · du(X) ∀f ∈ C (M). (3)

The tangent space TaM is n-dimensional and generated by the vec-
tors ∂

∂xi
, i = 1, . . . , n. The differentials dxi(a) : TaM → R form the

dual basis in T ∗aM : dxi(a)( ∂
∂xj

) = δij.

The set of all maps satisfying (3) is itself a module over C (M) that
will be denoted by Ω1(M): if ξ ∈ Ω1(M), then there is a naturally
defined map fξ ∈ Ω1.

Definition 7.1. The C (M)-module of maps X (M) → C (M), the
dual module to X (M), is called the module of differential 1-forms.
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It is convenient to denote the pairing between Ω1(M) and X (M)
by the angle braces,

∀ξ ∈ Ω1(M), X ∈X (M), 〈ξ,X〉 ∈ C (M).

By definition, for any collection of functions uk, fk ∈ C (M) the ex-
pression ∑

k

fk duk ∈ Ω1(M)

is a differential 1-form.

Proposition 7.1. In any coordinate chart x : U → Rn each 1-form can
be represented as

∑
fk(x) dxk with the appropriate smooth functions fk.

7.3. Action of smooth maps on differential forms. If F : M → N
is a smooth map, then the pullback operator F ∗ naturally acts on 1-
forms as follows,

F ∗(
∑

fk duk) =
∑

F ∗fk · dF ∗uk. (4)

This definition is self-consistent.

Problem 7.2. If F : M → N is a diffeo and ξ,X live on N , then

〈F ∗ξ, F ∗X〉 = F ∗ 〈ξ,X〉 , F ∗(fξ) = F ∗f · F ∗ξ. (5)

Prove it.

Definition 7.2. The above definition of the pull-back is simple but
ideologically wrong. The correct definition should be as follows.

If ξ ∈ Ω1(N) and a ∈ M , then for any vector v ∈ TaM the
value 〈F ∗ξ(a), v〉 is equal to 〈ξ(F (a)), dF (a) · v〉, where dF (a) : TaM →
TF (a)N .

This definition makes sense even if F is not a diffeomorphism. The
property (4) becomes then an easy lemma.

Remark 7.1. If A : P → Q is a linear map between two abstract
linear spaces P,Q, then there is a naturally defined dual (conjugate)
map A∗ : Q∗ → P ∗ between the respective dual spaces, which acts in
the “opposite” direction by the formula

〈A∗η, v〉 = 〈η, Av〉 ∀η ∈ Q∗, v ∈ P.

Using this duality, one can rewrite F ∗ξ = (dF )∗ξ, where (dF )∗ stands
for the dual of dF .

Example 7.2. Write the last formula “pointwise”.
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Note that, unlike the pullback of vector fields, this definition does
not require the map F to be invertible or even a local diffeo. All
smooth maps, even between manifolds of different dimensions, yield
well-defined pullbacks.

7.4. Integration of 1-forms. Differential 1-forms are born to be in-
tegrated along curves. The question why the definite integral of a real
function f : [a, b]→ R is denoted∫ b

a

f(x) dx

necessarily involving mysterious dx, puzzled generations of undergrad-
uate students. The “right” answer is that the object that we integrate is
not a function, but rather a differential form f dx, where x : [a, b]→ R
is the coordinate function on [a, b].

If γ : [0, 1] → M is a smooth curve and ξ ∈ Ω1(M) is a 1-form,
then its pullback γ∗ξ is a differential 1-form on R1 = R which can be
uniquely written as γ∗ξ = f(t) dt, where t is the “canonical” chart on
R1 = R.

Definition 7.3. Let γ : [0, 1] → M , t 7→ x(t), is a smooth (parame-
terized) curve and ξ ∈ Ω1(M) is a 1-form, then the integral of ξ over
Γ = γ([0, 1]) is the real number∫

Γ

ξ =

∫ 1

0

γ∗ξ.

This definition prompts a number of natural questions that have
expected answers.

Proposition 7.2. The integral is independent on the parametrization:
if t = t(s) : [0, 1] → [0, 1] is a smooth monotonously growing self-map
of [0, 1] into itself and γ̃ : s 7→ γ(t(s)) is a reparametrization of Γ, then∫

[0,1]

γ∗ξ =

∫
[0,1]

γ̃∗ξ. �

A slightly more focussed inspection allows to greatly extend this
result for any smooth map φ : [0, 1]→ [0, 1] which takes the boundary
{0, 1} into itself. If φ(0) = 0, φ(1) = 1, then such map is called
orientation-preserving and the corresponding reparametrization does
not change the value of the integral. If φ(1) = 0, φ(0) = 1, then the
map is called orientation-reversing, and the sign of the integral should
be changed. To take these nuances into account, we say about non-
parameterized but oriented curves : these are images Γ = γ([0, 1]) of
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smooth maps γ : [0, 1] → M with the marked “start point” γ(0) and
the “end point” γ(1).

Example 7.3. Let ξ = df for f ∈ C (M). Then for any oriented
oriented curve Γ the integral of ξ can be instantly computed:∫

Γ

df = f(end point)− f(start point).

This is known to your undergraduate brethren as the Newton-Leibniz
theorem. In particular, if the curve Γ is closed, γ(0) = γ(1), then∫

Γ
df = 0.

Remark 7.2. Assume Γ is a smooth curve in a domain U ⊆ Rn. Then
Γ can be arbitrarily accurately approximated by a polyline (piecewise-
linear curve) by selecting points A1, . . . , AN ∈ Γ at very small distances
from each other. Then the vectors vi = Ai+1 − Ai ∈ Rn will have
very small norm so that 〈ξ(Ai), vi〉 will be very small values, yet the
Riemann-like integral sum

N−1∑
i=1

〈ξ(Ai), Ai+1 − Ai〉

will converge to the limit which, of course, coincides with the integral∫
Γ
ξ. The advantage of this approach is the obvious independence of

the integral
∫

Γ
ξ on the specific parametrization γ(·) of Γ.

An alternative way to prove this independence is to refer to the
theorem on change of variables in the Riemann integral.

7.5. Lie derivative. If X is a vector field, then the flow F t
X yields

the family of pullbacks (F t
X)∗ on Ω1(M) and hence the Lie derivative

LX : Ω1(M)→ Ω1(M).

Lemma 7.1.

〈LXξ, Y 〉 = LX 〈ξ, Y 〉 − 〈ξ, LXY 〉 = X 〈ξ, Y 〉 − 〈ξ, [X, Y ]〉 ,
LX(fξ) = fLXξ + (LXf) · ξ.

Proof. This follows from the identity (5) applied to F = F t
X as t →

0. �

Example 7.4. What about LfXξ?
Recall that LfXY = [fX, Y ] = f [X, Y ] + (Y f) · X = fLXY +
〈df, Y 〉X, that is, on the level of operators of X (M) into itself,

LfX = fLX + 〈df, ·〉X,
thus the application X 7→ LX on X (M) is a non-tensor.
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Using this observation, we compute

〈LfXξ, Y 〉 = LfX 〈ξ, Y 〉 − 〈ξ, LfXY 〉
= fLX 〈ξ, Y 〉 − f 〈ξ, LXY 〉 − 〈df, Y 〉 〈ξ,X〉 . (6)

Again a non-tensor! LfX 6= fLX on Ω1(M) as well.

The long way to a nice formula goes through a systematic theory
involving both (linear) algebraic part and some calculus as well.

8. Multilinear algebra

If T ' Rn is an (abstract) linear space and T ∗ is its dual, the space of
linear functionals on T , then one can make a step further and consider
the space of multilinear forms ω, maps

T × · · · × T → R, (v1, . . . , vk) 7−→ ω(v1, . . . , vk),

R-linear in each argument vi separately. This space is called the tensor
product T ∗⊗· · ·⊗T ∗ and in turn is an R-linear space. If ξ1, . . . , ξk ∈ T ∗
are covectors, then the tensor product

ξ1 ⊗ · · · ⊗ ξk : (v1, . . . , vk) 7−→ ξ1(v1) · · · ξk(vk)
is such a k-linear map, and in general all k-linear maps are sums of such
tensor monomials. Note that the tensor product is non-commutative.

A k-valent tensor can be multiplied by an r-valent tensor, using the
distributivity law and non-commutative multiplication of monomials,
can be multiplied to yield a k + r-valent tensor. This tensor multipli-
cation is quite important.

8.1. Antisymmetric multilinear maps. A k-linear map ω : T n → R
is called symmetric (resp., antisymmetric), if any transposition of its
arguments preserves the value (resp., changes only the sign) of the map.

Example 8.1. Let δ : (Rn)n → R be the map which takes vectors
v1, . . . , vn, expands each vector as a column matrix of its components,
and yields the value of the determinant of the resulting n× n-matrix.
Multilinearity and antisymmetry are the basic properties of δ no matter
how it was introduced in your favorite undergraduate course.

Quadratic forms are the most known source of symmetric bilin-
ear maps: actually, they are defined using symmetrization of bilin-
ear maps. If b : T 2 → R is any bilinear map, then the map defined
by the formula b‡(v, w) = 1

2

(
b(v, w) + b(w, v)

)
is symmetric. Con-

versely, if q : T → R is a quadratic function, then its polarization
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b(v, w) = 1
2

(
q(v + w) − q(v) − q(w)

)
is a symmetric bilinear form.

In general, the symmetrization of a k-form b : T k → R is obtained by
the averaging over all permutations (Sk stands for the group of all
permutations on k symbols) of its arguments:

b‡(v1, . . . , vk) =
1

k!

∑
σ∈Sk

b ◦ σ(v1, . . . , vk).

Alternatively, a k-linear form b can be subjected to the antisym-
metrization (alternation),

b†(v1, . . . , vk) =
1

k!

∑
σ∈Sk

(−1)|σ|b ◦ σ(v1, . . . , vk),

where |σ| = ±1 is the parity of the permutation. In the simplest case

b†(v, w) = 1
2

(
b(v, w)− b(w, v)

)
= −b†(w, v).

For our purposes the antisymmetric case will be more important
because of the regular appearance of the determinant. We will denote
the set of antisymmetric multilinear forms on T as

∧k T ∗.

Example 8.2. Let δ1, . . . , δk are k linear independent 1-forms on Rk,
e.g., 〈δk, v〉 = k-th component of v, and δ(v1, . . . , vk) = 〈δ1, v1〉 · · · 〈δk, vk〉
is their tensor product. Then δ†(v1, . . . , vk) is an antisymmetric k-form
which coincides with the determinant up to a constant (equal to one
in the e.g.).

This operation turns the union of all k-forms for all 0 6 k 6 n =
dimT = dimT ∗ into an graded exterior algebra. We list the proper-
ties of this algebra: they can all be established by tedious but simple
computation.

Definition 8.1. If α ∈
∧k T ∗ and β ∈

∧l T ∗, then the exterior product

(or wedge product) α ∧ β ∈
∧k+l T ∗ which is defined by the “antisym-

metrization” of the tensor product α⊗ β, that is,

(α ∧ β)(v) =
∑

σ∈Sk+l

(−1)|σ| α
(
σ<(v)

)
· β
(
σ>(v)

)
(7)

where σ< is the tuple of the first k entries of the permutation σ on k+ l
symbols v = (v1, . . . , vk+l), and σ> are the last l entries.

Remark 8.1. In some sources the definition of the wedge product (7)
involves a coefficient 1

k!l!
which originates in the alternation of the tensor

product. Fortunately, this does not affect the following properties.

Theorem 8.1. The wedge product possesses the following properties.
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(1) It is associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.
(2) It is R-distributive: α∧(β+γ) = α∧β+α∧γ, α∧(cβ) = cα∧β

for c ∈ R.
(3) It is anticommutative: for any two 1-forms α, β ∈ T ∗ =

∧1 T ∗,

α ∧ β = −β ∧ α. More generally, if α ∈
∧k T ∗, β ∈

∧l T ∗, then
α ∧ β = (−1)klβ ∧ α.

(4) If α1, . . . , αk ∈ T ∗ =
∧1 T ∗, then

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) = det

〈α1, v1〉 . . . 〈α1, vk〉
...

. . .
...

〈αk, v1〉 . . . 〈αk, vk〉


(5) If ξ1, . . . , ξn ∈ T ∗ form a basis in T ∗, then any k-form can be

uniquely represented as sum of monomials

ω =
∑

i1<···<ik

ci1,...,ikξi1 ∧ · · · ∧ ξik ,

where summation is extended over all monotonously increasing
k-subsets {i1, . . . , ik} ⊂ {1, . . . , n}.

(6) Hence dim
∧k T ∗ =

(
n
k

)
, in particular, dim

∧n T ∗ = 1 and any
n-form on T is proportional to the “determinant” ξ1 ∧ · · · ∧ ξn,
called the volume form Υ.

(7) All spaces
∧k T ∗ for k > n are trivial (zero-dimensional).

(8) If A : T → T is a linear map, then it naturally defines the

“adjoint” (dual) linear transformation A∗ :
∧k T ∗ →

∧k T ∗ on
k-forms by the formula (A∗ω)(v1, . . . , vk) = ω(Av1, . . . , Ak). In
particular, A∗Υ = (detA) ·Υ.

8.2. Differential k-forms. A differential k-form is a smooth map ω
which associates a k-form ω(a) ∈

∧k T ∗a (M) smoothly depending on a.
Algebraically, such form is an antisymmetric module homomorphism
of the C (M)-module X (M)× · · · ×X (M) to C (M):

ω : (X1, . . . , Xk) 7→ ω(X1, . . . , Xk) ∈ C (M).

Sometimes we will use the “duality” notation and denote the right hand
side by 〈ω,X1, . . . , Xk〉 which is antisymmetric in the last k arguments.

All linear algebraic constructions can be extended (using the same
symbolism) on differential k-forms, in particular, the wedge product.

If x = (x1, . . . , xn) is a local coordinate system in U , then the differ-
entials dxi ∈ T ∗a (U) are 1-forms linear independent in each cotangent
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space. It follows then that any k-form can be written in these coordi-
nates as

ω =
∑

i1<···<ik

ai1,...,ik(x) dxi1 ∧ · · · ∧ dxik (8)

with
(
n
k

)
smooth coefficients a···(x) ∈ C (U).

We will denote by Ωk(M) the C (M)-module of differential k-forms
on a manifold M . The wedge product yields the exterior multiplication
Ωk(M) × Ωl(M) → Ωk+l(M). The full graded exterior algebra will be
denoted by Ω•(M).

If F : M → N is a smooth map between two manifolds, then it
naturally allows to pull back any k-form from N to M by the formula

〈F ∗ω,X1, . . . , Xk〉 (a) = 〈ω, dF (a)X1, . . . , dFk(a)Xk〉 (F (a)).

A trivial verification shows that for any monomial k-form ω = g df1 ∧
· · · ∧ dfk, where g, f1, . . . , fk ∈ C (M), we have

F ∗ω = F ∗g · d(F ∗f1) ∧ · · · ∧ d(F ∗fk)

(in the right hand side F ∗ means the pullback F ∗ : C (N)→ C (M) on
smooth functions). More generally, for any two forms on N we have

∀α, β ∈ Ω•(M) F ∗(α ∧ β) = (F ∗α) ∧ (F ∗β).

Needless to say, as any product, the wedge product is distributive
and derivation of the product yields the Leibniz rule,

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ).

The Lie derivative LXω be computed by applying LX to the “product”
〈ω, Y1, . . . , Yk〉 (evaluation of ω on an arbitrary collection of arguments)
also using the Leibniz rule,

LX 〈ω, Y1, . . . , Yk〉 = 〈LXω, Y1, . . . , Yk〉+
k∑
i=1

〈ω, Y1, . . . , LXYi, . . . , Yk〉 .

Since LXYi = [X, Yi], the derivative LXω is defined by this identity on
any collection of arguments Y1, . . . , Yk ∈X (M) in a unique way.
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8.3. Recap. Differential k-forms are antisymmetric maps of the C (M)-
module X (M)× · · · ×X (M) into C (M). The C (M)-module Ωk(M)
is generated by monomials f dg1 ∧ · · · ∧ dgk, f, gi ∈ C (M), where
d: C (M) ' Ω0(M) → Ω1(M) is the usual differential as it was in-
troduced for smooth functions. The evaluation is given by the k × k-
determinant.

There is the (algebraic) wedge product defined on the monomials by
applying the associative law:

(dg1 ∧ · · · ∧ dgk) ∧ (df1 ∧ · · · ∧ dfl) = dg1 ∧ · · · ∧ dfl.

It is associative (by construction) and anticommutative,

ω ∧ η = (−1)degω·deg η η ∧ ω.
Besides, it is naturally carried out by the pullback F ∗ for any smooth
map F : N → M , and any vector field X ∈ X (M) induces the Lie
derivation(s) LX : Ωk(M)→ Ωk(M) which satisfy the Leibniz rule

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη),

which coincides with the canonical action

LXf = 〈df,X〉 = Xf ∀f ∈ C (M) ' Ω0(M).

9. Exterior differential

If ω ∈ Ωk(M) is a differential k-form on a smooth manifold Mn

(for convenience we identify Ω0(M) with C (M)). The Lie derivative
LX : Ωk → Ωk is a nice operator on forms of the same rank k, but the
result depends on an extra vector field X. Thus for any form ω we
have a map

Lω : (X, Y1, . . . , Yk) 7−→ (LXω)(Y1, . . . , Yk).

It is immediate from the definitions that Lω is multilinear antisym-
metric with respect to the last k arguments. However, with respect
to the first argument it is “not linear”1 (more precisely, it is R-linear
but does not respect the module structure, LfXω 6= fLXω for f ∈
C (M)). This in turn follows from the fact that the Lie derivative
X, Y 7→ LXY = [X, Y ] is “not linear” in the first argument: [fX, Y ] =
f [X, Y ]− (LY f)X 6= f [X, Y ]. The only exception occurs for k = 0:

LfXg = f(LXg) = 〈dg, fX〉 = f 〈dg,X〉 .

1Not a tensor in the classical language.
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However, one can try and cook from Lie derivatives and a combina-
tion of differentials a winning combination that will be linear in X as
well.

9.1. Differential of 1-forms. Let ω ∈ Ω1. Then by definition of the
Lie derivative,

〈LXω, Y 〉 = 〈LXω, Y 〉 = LX 〈ω, Y 〉 − 〈ω, [X, Y ]〉 .
Substituting fX instead of X, we have

〈LfXω, Y 〉 = fLX 〈ω, Y 〉 − 〈ω, [fX, Y ]〉
= fLX 〈ω, Y 〉 − f 〈ω, [X, Y ]〉+ 〈ω,X〉 〈df, Y 〉 . (9)

If we consider the exact 1-form d 〈ω,X〉, its dependence on X follows
from the Leibniz rule,

d 〈ω, fX〉 = d(f 〈ω,X〉) = f d 〈ω,X〉+ 〈ω,X〉 df.
The “non-tensorial” part is the same as above, so it disappears if we
consider the combination

ηX = LXω − d 〈ω,X〉 ∈ Ω1(M),

η(X, Y ) = ηX(Y ) = 〈LXω, Y 〉 − 〈d 〈ω,X〉 , Y 〉 .
(10)

then η will be linear in X, hence bilinear in X, Y : ηfX = f · ηX .
A simple computation shows that

η(X, Y ) = LX 〈ω, Y 〉 − LY 〈ω,X〉 − 〈ω, [X, Y ]〉 , (11)

which instantly implies that η(X, Y ) = −η(Y,X), i.e., our efforts
brought the result.

Proposition 9.1. The expression η ∈ Ω2(M) is an exterior 2-form: it
is bilinear and antisymmetric.

Thus we managed to construct an object that in a sense contains all
Lie derivatives of the 1-form ω along all vector fields X, in the same
way as the differential of a 0-form df contains all Lie (directional)
derivatives LXf , and the result η(a) : T ∗aM × T ∗aM → R at each point
a ∈M depends only on the direction (vector) X(a) ∈ TaM .

Definition 9.1. The 2-form η will be called the differential of the form
ω. We will provisionally denote the corresponding operator by

d′ : Ω1(M)→ Ω2(M)

to avoid confusion with d: Ω0(M)→ Ω1(M).

Theorem 9.1. The operator d′ possesses the following algebraic prop-
erties :



CALCULUS ON MANIFOLDS 37

(1) The dependence of d′ω on ω is R-linear.
(2) The Leibniz rule: d′(fω) = df ∧ ω + f d′ω.
(3) The composition d′d : Ω0 → Ω2 is identically zero.

Proof. The first claim is obvious. The Leibniz rule follows from the
(11) and the Leibniz rule for LX , LY : the terms which are not divisible
by f are LXf · 〈ω, Y 〉−LY f 〈ω,X〉 = 〈df,X〉 〈ω, Y 〉−〈df, Y 〉 〈ω,X〉 =
(df ∧ ω)(X, Y ).

The last assertion, somewhat unexpected, follows from the represen-
tation (11).

d′df = LXLY f − LYLXf − L[X,Y ]f = 0

by the mere definition of the commutator [X, Y ]. �

9.2. Antiderivation. A convenient way to write (and understand)
such identities is via the operator of evaluation or, more generally,
an operator of insertion (also known as contraction). By definition, if
X ∈X , then

iX : Ω1 → Ω0, iXω = 〈ω,X〉 ,
and similarly,

i′X : Ω2 → Ω1, (i′X)η = η(X, •) = 〈η,X, •〉 .
In these terms the definition of the differential d implies the identity

LX = iXd as operator Ω0 → Ω1 → Ω0.

The representation (10) can be rewritten now in terms of the four
operators,

LX = i′Xd + d′iX as operator Ω1 → Ω2 → Ω1. (12)

Actually, one can instantly generalize the operator of contraction iX
to act on any k-forms (except for k = 0).

Definition 9.2.

iX : Ωk(M)→ Ωk−1(M), (iXω)(Y1, . . . , Yk−1) = ω(X, Y1, . . . , Yk−1).

The properties of this operator are obvious.

Theorem 9.2 (Leibniz rule for the antiderivation).

iX(ω ∧ η) = (iXω) ∧ η + (−1)degωω ∧ (iXη), (13)

besides, iXiY = −iY iX .

Of course, in addition to the operators iX decreasing the degree, one
has dual operators which increase the degree. If ξ ∈ Ω1,

ξ∧ : Ωk → Ωk+1, ω 7−→ ξ ∧ ω. (14)
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Problem 9.1. Find linear algebraic identities relating operators ξ∧

and iX .

10. Exterior derivative as an abstract need

Can we generalize the operators d, d′ to “derivatives” acting on
higher order forms and increasing their degree by 1? In other words,
we look for maps

Ω0(M)
d−→ Ω1(M)

d′−→ Ω2(M)
d′′−→ Ω3(M)→ · · · → Ωn(M) (15)

satisfying the conditions of Theorem 9.1?
The answer is positive, and such generalization can be constructed

by two equivalent ways.
First, we can postulate the Leibniz rule and require that

d(ω ∧ ξ) = (dω)∧ ξ + (−1)degωω ∧ (dξ) for any two forms ω, ξ. (16)

Theorem 10.1. There exists a unique family of R-linear operators

d = d(k) : Ωk(M)→ Ωk+1(M)

such that :

(1) d(0) coincides with the differential on Ω0(M) and with the exte-
rior differential d′ = d(1) on Ω1(M), in particular, d′df = 0 for
any f ∈ Ω0(M) ' C (M),

(2) d satisfies the Leibniz rule (16).

Proof. For any k-form

ω =
∑

i1<···<ik

ai1,...,ik(x) dxi1 ∧ · · · ∧ dxik ∈ Ωk(M)

define

dω =
∑

i1<···<ik

dai1,...,ik ∧ dxi1 ∧ · · · ∧ dxik ∈ Ωk+1(M).

One can then expand each differential

dai1,...,ik =
n∑
j=1

∂ai1,...,ik
∂xj

dxj,

keep only j different from i1, . . . , ik, and then use the anticommutative
law to place each term dxj ∧ dxi1 ∧ · · · ∧ dxik to the non-decreasing
order. �
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We will naturally simplify the notation and write d instead of d(k)

everywhere: the theorem asserts that we don’t run into any trouble.

Example 10.1. For f ∈ Ω0 we have df =
∑

i
∂f
∂xi

dxi and

d2f =
∑
i,j

∂2f

∂xi∂xj
dxi ∧ dxj = 0,

since the terms (i, j) and (j, i) cancel each other.

Theorem 10.2 (The Cartan “magic” formula, a.k.a. the homotopy
formula). The formula (12) holds for forms of any degree,

LX = diX + iXd. (17)

Proof. The formula is true for 1-forms, and for any monomial k-form
ω = f dg1 ∧ · · · ∧ dgk one can check it directly assuming that dω =
df∧dg1∧· · ·∧dgk and (repeatedly) the Leibniz rule for iX and LX . �

The alternative can be to postulate the Cartan formula for forms of
arbitrary degree. Then, rewriting it as

iXdω = LXω − diXω,

we can define dω for any k-form ω and any vector field X. A simple
check similar to that made at the beginning of this section shows that
the expression for dω defined by this way, will be indeed a multilinear
antisymmetric (k + 1)-form.

One way or another, we have constructed the (co)chain complex

Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ Ω3(M)

d−→ · · · d−→ Ωn(M) (18)

with the property d2 = 0.
One can explicitly express the value of dω of k-form on a tuple of k+1

vector fields X0, X1, . . . , Xk in a symmetric (or rather antisymmetric)
way. However, it is always better to use the inductive definition rather
than the following explicit double sum.

Theorem 10.3.

dω(X0, X1, . . . , Xk) =
k∑
i=0

(−1)iLXi

(
ω(. . . , X̂i, . . . )

)
+∑

i<j

(−1)i+jω([Xi, Xj], . . . , X̂i, . . . , X̂j, . . . ), (19)

where hats mean that the corresponding arguments are struck out from
the list (X0, . . . , Xk). �
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Remark 10.1. There is a nice mnemonic way to remember such for-
mulas, including the Cartan formula. To each of the operators i, L, d
we assign the degree, equal to −1, 0 and +1 respectively, in accordance
of how they affect the degrees of the forms on which they act.

Define the twisted commutator of two operators D1, D2 as follows,

{D1, D2} = D1D2 − (−1)degD1 degD2D2D1.

Thus the twisted commutator is sometimes the usual commutator,
sometimes the “average” D1D2 +D2D1.

Then we have the following table of relations:

{iX , d} = LX ,

{iX , iY } = 0,

{d, d} = 0.

(20)

The twisted commutators involving LX are the same as the usual com-
mutators, since degLX = 0:

{LX , LY } = L[X,Y ],

{LX , iY } = i[X,Y ],

{LX , d} = 0.

(21)

Problem 10.1. Compute the twisted commutators involving the op-
erators ξ∧, see (14).

11. The general Stokes theorem
Executive summary

The raison d’être of differential forms is to be integrated over higher-
dimensional analogs of smooth paths.

11.1. Integration of forms. One can choose a simple geometric shape,
say, a cube or a simplex ∆ in Rk as the parametrization source and
define a smooth (parameterized) k-cell on a manifold M as a smooth
map σ : ∆→M . The integral of a k-form ω is defined as the integral∫

σ(∆)

ω =

∫
∆

σ∗ω,

where the latter integral of a k-form σ∗ω = a(x) dx1 ∧ · · · ∧ dxk over
a simplex in Rk is by definition regarded as a Riemann integral of the
(smooth) function a : ∆→ R. Defined this way, the integral is indepen-
dent of the “parametrization” of the image σ(∆) by σ: if h : ∆→ ∆ is
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an orientation-preserving self-diffeomorphism of ∆, then integrals over
two cells, σ and σ ◦ h, will be the same. This follows from the formula
of change of variables in the Riemann integral.

11.2. Combinatorial topology. The above definition is linear with
respect to ω ∈ Ωk(M), and we can make it “linear” with respect to the
domain of integration: we can consider formal (finite) combinations of
cells with integer coefficients and extend the construction of integral
by linearity. The cell −σ = (−1) · σ is understood then as a cell σ ◦ h,
where h : ∆ → ∆ is any self-diffeomorphism of ∆ which reverses the
orientation. Integer combinations of cells are called k-chains.

Construction of chains is necessary to explain the notion of the ori-
ented boundary. For instance, the boundary of a oriented 1-cell in gen-
eral consists of two geometric points, and the Newton–Leibniz formula
suggests that the endpoint should be considered with the coefficient
+1, while the starting point with −1. In the same way the bound-
ary of a k-simplex consists of its faces, (k − 1)-dimensional simplices
themselves, which should be properly oriented (we omit completely the
discussion of what is an orientation per se). One obviously translates
this into the notion of a boundary ∂σ of a cell σ.

The construction of the oriented boundary is tailored to agree with
the “linear” structure of chains:

∂
(∑

niσi

)
=
∑

ni ∂σi.

A simple combinatorial argument shows the oriented boundary pos-
sesses the property that initially looks surprising: ∂∂∆ = 0. The expla-
nation comes from the rule defining orientation: every k−2-dimensional
face of ∆ enters the expression for ∂∂∆ twice, as it belongs to exactly
two faces of the ∂∆, and orientation assigns them the opposite orien-
tations so that they cancel each other in the final count.

11.3. The general Stokes theorem.

Theorem 11.1. For any k-chain σ on a manifold M and any smooth
k − 1-form ω ∈ Ω(M) ∫

∂σ

ω =

∫
σ

dω.

Idea of the proof. The above functoriality, linearity and possibility of
subdividing cells into sums of smaller cells implies that it is sufficient
to prove this result for a particular case where M = Rk, σ is a cube
[0, 1]k and ω is a monomial k − 1-form, say,

ω = a(x1, . . . , xk) dx2 ∧ · · · ∧ dxk.
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Then

dω =
∂a

∂x1

(x1, x2, . . . , xk) dx1 ∧ · · · ∧ dxk

and the result will follow from the Newton-Leibniz theorem applied to
functions of a single variable x1 with x2, . . . , xn considered as parame-
ters. �
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12. De Rham cohomology

12.1. Recap. Poincaré lemma for differential forms. Let U be
a star-shaped domain in Rn and ω ∈ Ωk(U) is a closed form, dω = 0.
We construct explicitly a (k − 1)-form α such that ω = dα.

Consider the linear homotopy contracting U to the origin. By def-
inition, this is a one-parametric family of smooth maps Ht : x 7→ tx,
x ∈ U , t ∈ [0, 1]. Obviously, H∗1ω = ω, H∗0ω = 0. The derivative d

dt
H∗t

can be easily expressed through the Lie derivative along the Euler (ra-
dial) vector field E =

∑n
1 xi

∂
∂xi

, since Ht = F ln t
E (the r.h.s. is the flow

of E):

d

dt
H∗t =

d

dt
F ln t
E =

1

t

(
F ln t
E

)∗
LE =

1

t
H∗t (iEd + diE).

Note that despite the “singular” coefficient 1
t
, the result is a smooth

form by construction (the incredulous can verify it by direct inspec-
tion).

Applying this identity to the closed form ω and integrating the result
in t along [0, 1] we see that

ω = H∗1ω −H∗0ω =

∫ 1

0

d

dt
H∗t ω dt =

∫ 1

0

1

t
H∗t diEω dt = d

∫ 1

0

H∗t iEω dt.

Note that the homotopy Ht is exactly the same that was used to con-
struct the cone over a chain σ in the “geometric” proof of the Poincaré
lemma.

12.2. De Rham complex. The family of infinite-dimensional spaces
equipped with the operator d2 = 0. The cohomology of this complex
is by definition Ker d/ Img d, i.e., the set of obstructions preventing a
closed form to be exact (integrable).

From the Stokes theorem it is clear that any closed form which has a
nonzero integral over a cycle (chain with zero boundary) cannot be inte-
grated. The big “if” is whether this is indeed an obstruction (perhaps,
such forms don’t exist at all) and whether this is a unique obstruction
to integrability.

The question is settled by the de Rham theorem, but there is much
more in stack.

12.3. How to calculate the cohomology. Assume that M =
⋃
i Ui

is an open covering of M such that all Ui and their nonempty pairwise
intersections Uij = Ui ∩ Uj are diffeomorphic to the unit ball (hence
subject to the Poincaré lemma).
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Consider a closed 1-form ω ∈ Ω1(M). As we know, in general ω
may be non-exact, but how can one measure the obstruction to non-
exactness?

By the Poincaré lemma, all restrictions ω|Ui
are exact: there exists

a collection of smooth functions fi ∈ C (Ui), such that dfi = ω in Ui.

Such functions are defined modulo constant terms: f̃i = fi + ci would
do the job for any constants ci ∈ R.

On each (nonempty) intersection Uij the differentials of two functions
must be the same, d(fi − fj) = 0. Therefore there exist constants
rij = −rji ∈ R such that fi − fj = rij. This holds only if Uij is
connected, but we had explicitly assumed this. The values rij are
essentially determined by the form ω.

Suppose that we can find constants ci ∈ R in such a way that

ci − cj = rij = −rji = cj − ci for all i, j such that Uij 6= ∅.

Then replacing the functions fi by the functions f̃i = fi + ci, we see

that f̃i = f̃j on Uij, that is, the “local primitives” fi after correction by
suitable constants ci match each other on the intersections and hence
produce the global primitive f̃ such that df̃ = ω.

Thus the question about “obstruction to integrability” is reduced to
the following problem from linear algebra: when the above system of
linear algebraic equations solvable? A more accurate (and interesting)
form of the same question is as follows.

Let {Ui}i∈I1 be the covering as above, and let I2 = {(i, j) : Uij 6=
∅} ⊆ I1× I1 be the set of indices corresponding to nonempty pairwise
intersections. Consider the linear map

RI1 → RI2 , {ci} 7→ {ci − cj}.

What is the corank of this map, i.e., the codimension of its image?
Note that the “structure” of the map is extremely simple, the devil

is in the combinatorics of indices which is ultimately determined by the
covering.

Example 12.1. Consider the circle which is covered by two maps. . .

12.4. What about 2-forms? In this case we will have to consider
triple intersections.

Primitives of a closed 2-form ω ∈ Ω2(M) are 1-forms ξi ∈ Ω1(Ui)
which are well defined in Ui. As before, they may disagree on the
pairwise intersections Uij:

ξi − ξj = αij ∈ Ω1(Uij.
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Obviously, dαij = 0. We want to twist the closed 1-forms ξi by exact
1-forms ξi + dfi so that after the twist we will have αij = 0. To that
end, we have to ensure that

dfi − dfj = αij in Uij.

Since dαij = 0, we can find smooth functions gij such that dfi− dfj =
dgij. However, in general this does not imply yet that we can find fi
such that gij = fi−fj: if it were the case, we would have gij+gjk+gki =
0, which is not guaranteed: in general, the above sum is a nontrivial
constant rijk. However, if we can twist gij by suitable constants cij ∈ R
so that

cij + cjk + ckj = rijk
over all triple intersections, then we can resolve the last system of
equations and construct the functions gij and fi as required.

12.5. Čech cohomology. In the initial approximation the Čech co-
homology is defined for acyclical coverings. Those can be thought as
coverings of a manifold by open sets {Ui} such that all nonempty finite
intersections are diffeomorphic to the open ball. Locally this is not a
problem: convex bodies satisfy this condition, so a covering that is fine
enough can be assumed acyclic without loss of generality.

Definition 12.1. A (real) k-cochain c is a collection of real numbers
c = {ci0i1···ik} associated with all non-empty intersections Ui0···ik =
Ui0 ∩ · · · ∩Uik which is antisymmetric with respect to all permutations
of the indices.

For each (k − 1)-cochain c its coboundary is a k-cochain δc defined
as follows,

(δc)i0···ik =
k∑
r=0

(−1)rci0···îr···ik

(the rth index is omitted).

Proposition 12.1.
δδ = 0.
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13. Riemannian manifolds

Recall that for any smooth manifold M , dimM = n, the union
TM =

⋃
a∈M TaM , called the tangent bundle, is itself a smooth mani-

fold, dimTM = 2n.

Example 13.1. Prove this and construct an atlas of charts on TM .

Recall that each bilinear form B : Rn × Rn → R can be made into
a quadratic form Q : Rn → R by restricting on the diagonal, Q(v) =
B(v, v). Conversely, any quadratic form Q can be polarized to a sym-
metric bilinear form B(u, v) = 1

2
(Q(u+v)−Q(u)−Q(v)). It is positive

definite, if Q(v) > 0 and Q(v) = 0 ⇐⇒ v = 0.

13.1. Riemannian manifolds: definitions.

Definition 13.1. A Riemannian metric on a manifold M is a smooth
function g : TM → R+ which, when restricted on any tangent space
TaM , is a positive definite quadratic form. A Riemannian manifold is
a manifold equipped with a specific Riemannian metric.

Example 13.2. The Euclidean space Rn equipped with the same stan-
dard quadratic form g(v) = 〈v, v〉 =

∑n
i=1 v

2
i for any v = (v1, . . . , vn) ∈

TaRn ' Rn.

The vast source of examples is provided by the induced structures:
if M is a Riemannian manifold and N ⊆ M is a submanifold. Then
TN ⊆ TM , and the restriction of g on TN is a Riemannian metric
making N into a Riemannian manifold.

Thus any smooth submanifold of Rn, say, the unit sphere Sn−1 in-
herits the structure of a Riemannian manifold.

The same manifold can be equipped with different Riemannian met-
rics. For instance, the torus obtained by rotation of a circle around an
axis in R3 is embedded in R3 in the natural way and so inherits the
Riemannian structure.

On the other hand, if we consider the quotient T2
a,b = R2/aZ + bZ

for a pair of linear independent vectors a, b ∈ R2, then it is naturally
equipped by the Riemann metric in R2, since all translations preserve
the scalar product. These are called flat tori.

Definition 13.2. Two Riemannian manifolds (M, g) and (N, h) are
isometric, if there exists a diffeomorphism F between them, which
transforms one Riemannian metric into another.
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If F : (M, g)→ (N, h) is a differentiable injective2 map such F ∗h = g,
then we say that M is isometrically embedded in N .

13.2. What can be done with a Riemannian metric? First, it
allows to identify X (M) with Ω1(M): a vector field X and a 1-form ξ
are dual, if for any other vector field Y ∈X (M) one has

g(X, Y ) = ξ(Y ).

Example 13.3. The vector field grad f is dual to the 1-form df .

A huge generalization of this example is the Hodge star operator
making Ωk(M) and Ωn−k(M) into dual spaces. Will be discussed later.

Second, we can measure lengths of the smooth curves and angles
between them: by definition, the length of a smooth curve γ : [0, 1]→
M is the integral

L(γ) =

∫ 1

0

√
g(γ̇(t), γ̇(t)) dt > 0.

Note that the length is not given by the integral of a 1-form, so L(γ) =
L(−γ), but is independent of the parametrization of the curve. A
similar expression is given by the action3, the integral

A(γ) =

∫ 1

0

g(γ̇(t), γ̇(t)) dt =

∫
γ

ξγ, ξγ = iγ̇g = g(γ̇, · ) ∈ Ω1(M),

where ξγ is the 1-form dual to the velocity vector vector field γ̇ defined
along γ. The advantage of action is differentiability of the integrand,
disadvantage is the explicit dependence on parametrization.

Having lengths, one can meaningfully talk about shortest curves con-
necting two given endpoints. Such curves are called geodesic curves.
An smooth infinite curve is called geodesic, if it can be split into short-
est curves (spell out the formal definition!).

Example 13.4. In the Euclidean space the shortest curves are line
segments, and infinite geodesics are straight lines.

One can use simple geometric arguments to show that on the stan-
dard round sphere S2 ⊂ R3 the shortest curves are arcs of the large cir-
cles (sections of the sphere by planes through the origin): it is enough
to verify that such curves must be planar. The arc of length > π is
not shortest anymore (its complement is), and large circles (without
the endpoints) are geodesics. There are no non-closed geodesics on the
sphere!

2Why there cannot be isometric maps which decrease the dimension?
3Sometimes this integral is referred to as the energy and preceded by the coeffi-

cient 1
2 .
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There are no topological obstructions for a manifold to be Riemann-
ian.

Theorem 13.1. Any smooth manifold can be equipped with a Rie-
mannian metric.

Proof. Let {Ui} be a locally finite covering of M by charts xi : Ui → Rn

and 1 =
∑

i ψi the subordinate partition of unity, C (M) 3 ψ > 0,
suppψi ⊆ Ui. In each chart we have metric gi pulled back from Rn.
The sum

∑
ψigi yields a Riemannian metric which is nondegenerate.

Note that this argument would fail if instead of the positive definite
quadratic form we were looking for a metric with a different signature!

�

14. Hypersurfaces in Rn as Riemannian manifolds:
Gauss theory

14.1. Parallel transport and covariant derivation. There is a
rather large group of isometries of the Euclidean space (Rn, g), g(x, v) =
〈v, v〉, containing the subgroup (isomorphic to Rn) of parallel transla-
tions.

The existence of the parallel transport allows one to calculate the
derivative of a vector field Y along any smooth curve as follows: if
the curve is given by the parametrization γ : [0, 1] → Rn, t 7→ x(t) =
(x1(t), . . . , xn(t)) and the vector field is given by its coordinate func-
tions (Y1(x), . . . , Yn(t)), then we can take a composition Y (γ(t)) : [0, 1]→
Rn and compute the velocity d

dγ
Y = d

dt
Y (γ(t)). By the chain rule, it

can be expressed through the differential operator

∇XY = (LXY1, . . . , LXYn), X, Y,∇XY ∈X (Rn), (22)

as the derivation along the velocity vector γ̇,

d

dγ
Y = ∇γ̇Y.

Looking at the operator ∇, we immediately see that it satisfies a num-
ber of properties:

(1) ∇ is R-linear in both arguments X, Y ,
(2) ∇X respects the Leibniz rule: ∇X(fY ) = (∇Xf)Y + f(∇XY ).

There is only one way to interpret ∇Xf for f ∈ C (M) as LXf .
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(3) ∇fXY = f∇XY , that is, the operator ∇ acts on vector fields in
the same way as LX acts on functions (such behavior is called
tensorial).

(4) Moreover, if Y, Z ∈X (Rn) are two vector fields, then the Leib-
niz rule holds for the scalar product 〈·, ·〉:

∇X 〈Y, Z〉 = LX 〈Y, Z〉 =
〈
∇XY, Z

〉
+
〈
Y,∇XZ

〉
. (23)

By definition, ∇X acts on vector fields in the same way as X = LX
acts on scalar functions. In particular,

∇XY −∇YX = [X, Y ]. (24)

Definition 14.1. A differential operator∇ : X (M)×X (M)→X (M)
satisfying the properties (1)–(3) above, is called the covariant deriva-
tion. The image ∇XY is the covariant derivative of the vector field Y
along the vector field X.

If γ is a (piecewise)-smooth curve, than the “vector field” Y defined
only on the image of γ, is called constant along γ, if ∇γ̇Y = 0. For any
such field the value Y (γ(1)) is called the parallel transport of Y (γ(0))
along γ.

We say that ∇ defines a connexion on the manifold M . It is called
symmetric, if (24) holds. If M is a Riemannian manifold and (23)
holds, we say about the Riemannian connexion.

The property (23) means that the parallel transport in Rn is an
isometry between Tγ(0)Rn and Tγ(1)Rn.

14.2. Induced covariant derivation. We will show how the deriva-
tion ∇XY can be “restricted” to vector fields tangent to a hypersurface
M ⊆ Rn, producing a vector field which is also tangent to M .

If Mn−1 ⊂ Rn is a smooth hypersurface, then the parallel trans-
port in Rn does not map tangent subspaces into themselves. On the
infinitesimal level, the covariant derivative ∇XY for two vector fields
X, Y ∈X (M) tangent to M is not necessarily tangent to M .

The required correction is both natural and minimal.

Definition 14.2. The covariant derivative ∇XY of a vector field Y ∈
X (M) along X ∈ X (M) is the orthonormal projection of ∇XY ∈
X (Rn) onto TM ⊆ TRn ' Rn × Rn. Of course, it depends on the
hypersurface M .

A vector field Y ∈ X (M) is said to be parallel along a curve γ :
[0, 1] → M , if ∇γ̇Y = 0. This defines the linear operator between
Tγ(0)Rn and Tγ(1)Rn, called the parallel transport.
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Example 14.1. Let E1, . . . , En ∈ X (M) be (locally) linear indepen-
dent vector fields on M , say, coming from the derivations ∂x1 , . . . , ∂xn in
some chart. Then we can define n3 functions on M by the conditions,

∇Ei
Ej =

n∑
k=1

ΓkijEk, (25)

expanding the covariant derivatives in the basis {Ei}. The functions
Γkij are called the Christoffel symbols. If the connexion ∇ is symmetric,

then Γkij = Γkji.
Assume that the curve γ is given by its smooth parametric equation

t 7→ γ(t). Then a vector field Y =
∑
yi(t)Ei(t) is parallel along γ, if

and only if ∇γ̇Y = 0. Expanding this identity using the Leibniz rule,
we obtain a system of linear homogeneous ODEs for the functions yi(t),
which can be solved with any initial condition.

The fundamental question is as follows. Embedding of M into Rn in-
duces the Riemannian metric on M . The parallel transport and covari-
ant derivation are explicitly defined in terms of the embedding (which
is much more information). Can one determine the result of the trans-
port in terms of the induced metric only? The answer obtained by
Gauss, the celebrated Theorema Egregium, is affirmative. We outline
the steps towards explaining this result.

Let Mn−1 ⊂ Rn be a smooth hypersurface and N a unit normal
vector field on it:

∀a ∈M N(a) ∈ TaRn, 〈N(a), N(a)〉 = 1, 〈N(a), · 〉|TaM = 0.

The map a 7→ N(a) is called the Gauss map M → Sn−1 ⊆ Rn.
For any X ∈ X (M) the “ambient covariant derivative” ∇XN is

tangent to M . Indeed, by the Leibniz rule〈
∇XN,N

〉
= 1

2
LX 〈N,N〉 = 0, hence N ⊥ ∇XN ∈X (M).

Definition 14.3. The Weingarten operator is the linear operator

Wa : TaM → TaM

which sends a vector v into ∇vN (since ∇ is a covariant derivative,
one can choose any X ∈ X (M) such that X(a) = v, and compute
∇XN). For a vector field X ∈ X (M) we denote by WX the field
a 7→ WaX(a) ∈ TaM .

The Weingarten operator Wa is the Jacobian (derivative) of the
Gauss map at a point a ∈M .

Example 14.2. For the round unit sphere Sn−1 ⊆ Rn the Gauss map
is the identity, so the Weingarten operator is also identical.
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Lemma 14.1. The Weingarten operator is self-adjoint in the induced
metric on TaM .

Proof. Let X, Y ∈ X (M) be any two vector fields tangent to M . We
want to prove that

〈WX,Y 〉 = 〈X,WY 〉 .

Without loss of generality we may assume that X, Y,N are defined in
a neighborhood of M . Then, using twice the Leibniz rule (23) and the
symmetry condition (24) of ∇, we conclude that

〈WX,Y 〉 − 〈X,WY 〉 =
〈
∇XN, Y

〉
−
〈
X,∇YN

〉
=
(
∇X 〈Y,N〉 −

〈
∇XY,N

〉)
−
(
∇Y 〈X,N〉 −

〈
N,∇YX

〉)
= 0− 0−

〈
N,∇XY −∇YX

〉
= −〈N, [X, Y ]〉 .

But the commutator of two vector fields X, Y tangent to M , is again
tangent to M , hence the result is zero. �

Definition 14.4. The eigenvalues λ1(a), . . . , λn−1(a) of the Weingarten
operator La are called the principal curvatures of the hypersurface. By
construction, they are functions of the point on M . While the princi-
pal curvatures themselves may be non-smooth, their symmetric combi-
nations (coefficients of the characteristic polynomial det(λ− La)), are
smooth. In particular, smooth are the determinant K(a) =

∏n−1
1 λi(a),

called the Gaussian curvature, and the trace H(a) =
∑n−1

1 λi(a) called
the mean curvature of M . The corresponding eigenspaces of TpM are
called directions of curvature (they are pairwise orthogonal for different
eigenvalues).

Note that all these definitions are still non-intrinsic: they explicitly
depend on the embedding of M into Rn.

The meaning of the curvatures can be seen from the following con-
struction. Let Xi(a) ∈ TaM be the eigenvector of W = Wa, cor-
responding to the eigenvalue λi(a). Consider the 2-plane Πi(a) in
Rn spanned by N(a) and Xi(a). Then the Gauss map restricted on
the 1-dimensional subspace RXi(a) ⊂ TaM and its derivative can
be instantly computed in terms of the osculating circle of the section
Πi(a) ∩M as the inverse radius of this circle.

14.3. The Gauss equation. Using the Weingarten operator, one can
easily express the induced covariant derivative as it was defined in
Definition 14.2: to compute the orthogonal projection, one has to add
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to ∇XY the normal vector N with a suitable coefficient,

∇XY = ∇XY −
〈
∇XY,N

〉
N = ∇XY +

〈
Y,∇XN

〉
N

= ∇XY + 〈WX,Y 〉N,
since

0 = ∇X 〈Y,N〉 =
〈
∇XY,N

〉
+
〈
Y,∇XN

〉
= 〈Y,WX〉 .

14.4. Curvature and the Codazzi–Mainardi equations. We start
with the obvious identity

∇X∇Y −∇Y∇X = ∇[X,Y ]

between first order differential operators: it is true when applied to
functions, hence to vector fields in Rn.

Substituting into this identity the Gauss identity

∇X = ∇X − 〈WX, · 〉N,
applying the result to a third vector field Z ∈X (Rn) and using several
times the Leibniz rule and linearity of the Weingarten operator W , we
can separate at the end the normal and tangential components of the
result. These will yield us two identities:(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z = 〈WY,Z〉WX − 〈WX,Z〉WY, (26)

and another identity valid for any Z, which implies that

∇X(WY )−∇Y (WX) = W [X, Y ]. (27)

The identity (26) is very remarkable: it asserts that a certain dif-
ferential operator that could apriori be of order 2 with respect to Z
and of order 1 with respect to X, Y , is of order zero with respect to all
arguments! In the classical language, it is a tensor, called the curva-
ture tensor, usually considered as a multilinear scalar function of four
vector arguments

R(X, Y, Z, V ) =
〈(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z, V

〉
=
〈
〈WY,Z〉WX − 〈WX,Z〉WY, V

〉
= 〈WY,Z〉 〈WX,V 〉 − 〈WX,Z〉 〈WY, V 〉 . (28)

Note that the Weingarten operator is self-adjoint, which means that the
curvature tensor has a very rich symmetry with respect to permutations
of the arguments. The least obvious of these is the so called (the
first) Bianchi formula, which is obtained by substituting the symmetry
assumption ∇XY −∇YX = [X, Y ] into the Jacobi identity [X, [Y, Z]]+
[Y, [X,Z]] + [Z, [X, Y ]] = 0.
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Problem 14.1. Write down this identity explicitly.

For the case of 2-surfaces in R3, the geometric nature of this tensor
can be described as follows. Let X, Y be two orthonormal vectors.
Then

R(X, Y,X, Y ) = 〈WX,Y 〉 〈WY,X〉 − 〈WY,X〉 〈WY, Y 〉
= − detW = −λ1λ2 = −R(X, Y, Y,X) (29)

is the Gaussian curvature of the surface.
This formula is important since the left hand side of (26) is defined

in terms of the intrinsic geometry of the surface M (the connexion ∇
and the Riemannian metric), while the Weingarten operator depends
on the embedding of the surface M into R3.

14.5. How unique is the Riemannian connexion? There is only
one covariant derivative which is compatible with a given Riemann-
ian metric on a manifold. Recall that we conveniently denote the Lie
derivation on functions as ∇X = LX = X.

Theorem 14.1. The covariant derivation ∇ on a Riemannian mani-
fold, which is symmetric and preserves the Riemannian structure, i.e.,
∀X, Y, Z ∈X (M) satisfying the conditions

∇XY −∇YX = [X, Y ], ∇X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 ,

is unique.

Remark 14.1. The compatibility condition means that the parallel
transport along any curve is an isometry between the respective tangent
spaces. Indeed, if both X(t), Y (t) are parallel along γ, i.e., ∇γ̇X =
∇γ̇Y = 0, then

〈X(1), Y (1)〉 − 〈X(0), Y (0)〉 =

∫ 1

0

∇γ̇ 〈X(t), Y (t)〉 dt

=

∫ 1

0

〈∇γ̇X, Y 〉+ 〈X,∇γ̇Y 〉 dt = 0.

Proof of the Theorem. Let X, Y, Z ∈ X (M) be any three commuting
vector fields. We have the following identities:

∇X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 ,
∇Y 〈X,Z〉 = 〈∇YX,Z〉+ 〈X,∇YZ〉 ,
∇Z 〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉

(30)
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Adding the first two and subtracting the third identity, we have

∇X 〈Y, Z〉+∇Y 〈X,Z〉 − ∇Z 〈X, Y 〉 =

〈∇XY, Z〉+ 〈Y, [X,Z]〉+ 〈∇YX,Z〉+ 〈X, [Y, Z]〉
= 2 〈∇XY, Z〉 − 〈Z, [X, Y ]〉 = 2 〈∇XY, Z〉 . (31)

Note that the left hand side depends only on the Riemannian metric,
while the right hand side involves the covariant derivative ∇XY .

Let E1, . . . , En ∈ X (M) be coordinate vector fields for any local
coordinate system (commuting by definition), and apply the identity
(31) to all triples Ei, Ej, Ek. As a result, for any pair i, j one gets
an expression of the covariant derivative ∇Ei

Ej via its projections on
each direction Ek in terms of the Riemannian metric. This determines
the covariant derivative uniquely, if the Riemannian metric is non-
degenerate (it always is by definition). �

This implies what Gauss called Theorema Egregium and is the “car-
tographer’s nightmare”: the surface of the Earth cannot be rendered
isometrically on the flat paper. Indeed, the Gauss curvature of the
sphere is positive (compute it for the sphere of radius r > 0), while
that of the plane is zero. Yet the globus is perfect as a scaled image.
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15. Geodesics

Let M be a Riemannian manifold with the metric

〈·, ·〉 =
∑
i,j

gij(x) dxi dxj

and the Riemannian connexion ∇ such that

∇∂i∂j =
n∑
k=1

Γkij(x) ∂k,

where ∂i = ∂
∂xj

in the local coordinates (x1, . . . , xn).

15.1. Some obvious computations. For a vector field

W = (w1(x), . . . , wn(x)) =
∑
i

wi(x)∂i

to be parallel (or constant) along a smooth curve γ : t 7→ x(t) with the
velocity vector γ̇(t) = (ẋ1(t), . . . , ẋn(t)) = (v1(t), . . . , vn(t)), t ∈ [0, T ],
one has to meet the condition ∇γ̇W = 0, i.e.,

0 = ∇γ̇

[∑
i

wi∂i
]

=
∑
i

[
(∇γ̇wi)∂i + wi

∑
k,j

Γkijvj∂k

]
,

This vector equation yields n scalar ODEs

ẇk(t) +
∑
ij

Γkij(t)wi(t)vj(t) = 0, k = 1, . . . , n.

This can be considered as a system of linear equations for the unknown
functions w(t) = (w1(t), . . . , wn(t)) on [0, T ]. For any initial condition
W (0) it uniquely defines the solution W along any interval. The vector
W (T ) is the result of the parallel transport along γ from γ(0) to γ(T ).

Definition 15.1. A curve is called geodesic, if its velocity is constant
(along the curve).

This is the nearest approximation for the mechanical idea of a straight
line as a trajectory of a particle moving in absence of any external
forces.

The requirement that γ is geodesic, takes the form ∇γ̇ γ̇ = 0. Then
in the above equations w = v = ẋ(t) are derivatives of the unknown
functions x(t) describing γ. Thus the differential equation for geodesics
is

ẍk(t) =
∑
i,j

Γkij
(
x(t)

)
ẋi(t)ẋj(t).
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This is a second order nonlinear differential equation whose solution
requires the initial conditions

x(0) = a ∈ Rn, ẋ(0) = v ∈ TaRn ' Rn.

Solution of this equation is guaranteed by general theorems of ODE,
but in general only locally, for sufficiently small values of t, in general,
depending on a and v.

Note that if γ = γa,v(t) is a geodesic curve defined on [0, T ], then
for any c ∈ R the curve γ(ct) : [0, c−1T ] is also geodesic with the initial
velocity cv (in particular, γ(t) ≡ a is defined on [0,+∞) and has the
initial velocity 0. This allows introduce the self-consistent notation

expa(tv) : (a, v, t) 7−→ γa,v(t).

It is defined for all combinations (t, v) such that t‖v‖ is sufficiently
small. This freedom can be used to ensure that the exponential map
above is defined, say, for all |t| < 1.

Proposition 15.1. For every point a ∈M on a Riemannian manifold
there exists a positive ε > 0 such that the exponential map

exp: TM × R→M, (a, v, t) 7−→ γa,v(t),

is well defined in the ε-neighborhood of the point (a, 0) ∈ TM for all
|t| < 1.

In other words, from any point a ∈M and in any direction v ∈ TaM
one can find a geodesic curve γa,v : t 7→ M passing through this point
and tangent to this direction.

Computing the first order terms of exp in t, we see that

expa(tv) = a+ tv + o(|t|).

Combining this with the inverse function theorem, we prove the follow-
ing theorem.

Theorem 15.1. The exponential map

v 7−→ expa(v)

is a diffeomorphism between a small enough neighborhood of the origin
in TaM and a small neighborhood of a in M , which sends lines {tv :
t ∈ R} into geodesic curves.

For compact Riemannian manifolds (without boundaries) these lo-
cal results suffice to prove what Euclid had to postulate for straight
lines: any geodesic curve on any compact manifold can be extended
unlimited.
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For noncompact manifolds one has to explicitly require the geodesic
completeness which, fortunately, coincides with the topological com-
pleteness.

Theorem 15.2 (Hopf–Rinow, 1931). If a Riemannian manifold is a
complete metric space with respect to the metric induced by the Rie-
mannian structure, then it is geodesically complete, i.e., expa is well
defined on the whole TaM for any a ∈M , and vice versa.

15.2. Exponential map and local minimality. Consider a point
a ∈M and the exponential map expa : TaM → (M,a). Let S : (M,a)→
R+ be the transplant of the squared norm: S(expa(v)) = 〈v, v〉. This is
a smooth function on M near a, whose level hypersurfaces are images
of the spheres 〈v, v〉 = const. The rays R+v = {rv : v ∈ TaM, r ∈
R+} ⊂ TaM are orthogonal to the spheres.

The exponential map is not an isometry, however, the above orthog-
onality is preserved by the exponentiation.

Proposition 15.2. The geodesics γa,rv = expa(rv) are orthogonal to
the level hypersurfaces S = const.

Proof. Consider the vector field R of unit length, tangent to the geo-
desic pencil, and let X be an arbitrary vector field such that LXS = 0,
which commutes with R, [R, X] = 0. We prove that 〈R, X〉 ≡ 0. For
that sake differentiate the identity 〈R,R〉 ≡ 1 along X:

0 = ∇X 〈R,R〉 = 〈R,∇XR〉 = 〈R,∇RX〉 ,
since ∇ is symmetric and [X,R] = 0. This implies that “radial deriva-
tive” of the scalar product 〈R, X〉 also vanishes:

∇R 〈R, X〉 = 〈∇RR, X〉+ 〈R,∇RX〉 = 0 + 0 = 0,

since the field R is the velocity of geodesics. Thus 〈R, X〉 is constant
along each geodesic, and obviously in the limit r → 0+ we have the
orthogonality, so that this constant is zero. Since X was arbitrary, R
is orthogonal to {S = const} at every point of the latter. �

Corollary 15.1. For as long as the exponential map expa : TaM →
(M,a) remains a diffeomorphism, the geodesic curve is “the shortest”
smooth curve among all curves with the same points (more precisely,
its length is less or equal than the length of any other curve).

Proof. Let r(x) =
√
S(x) be the “geodesic distance function” on M

from the given point a. The geodesic curves parameterized by the
arclength are orthogonal to the surfaces r = const. Therefore for any
smooth curve the absolute value of the differential dr on the velocity
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vector is no greater than the norm of the velocity vector (in the same
way as the leg of an orthogonal triangle cannot be greater than its
hypotenuse). Integrating the norm of velocity, we see that the length
of any curve connecting a and b is no greater than r(b), the length of
the geodesic curve from a to b. �

15.3. Variations theory for geodesics. Given a smooth curve γ : [0, T ]→
M on a Riemannian manifold, one can define two closely related inte-
grals, length and action,

L(γ) =

∫ T

0

‖γ̇(t)‖ dt, E(γ) =

∫ T

0

‖γ̇(t)‖2 dt,

where ‖v‖2 = 〈v, v〉 is the Riemannian scalar square. The first integral
has an advantage that it does not depend on the parametrization of the
curve γ, only on its image. However, the integrand in it is a non-smooth
function, unlike in the second case. By the Cauchy inequality,

L2(γ) =

(∫ T

0

‖γ̇‖ · 1 dt

)2

6
∫
‖γ̇‖2 dt ·

∫ T

0

dt = E(γ)T.

Consider a one-parametric family of smooth curves

[0, 1]× (R1, 0) 3 (t, s) 7→ γ(t, s) = γs(t) ∈M,

which we consider as a deformation of the smooth curve γ0. Con-
sider the function of s defined as E(γs) : (R1, 0) → R. It defines two
commuting vector fields which are γ∗-images of the fields ∂t and ∂s
on [0, T ]× (R1, 0) (for simplicity we assume that γ is injective almost
everywhere).

Denote these fields by V (the “velocity” of trajectories) and W (the
“variation field). Together with V we consider also the “acceleration”
field A = ∇V V .

Proposition 15.3.

d

ds

∣∣∣∣
s=0

E(γs) = 2 〈V,W 〉
∣∣∣∣γ0(1)

γ0(0)

− 2

∫ 1

0

〈W,A〉 dt.
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Proof. This is nothing but the formula of derivation under the sign of
integral:

d

ds

∣∣∣∣
s=0

E(γs) =

∫ 1

0

∇W 〈V, V 〉 dt = 2

∫ 1

0

〈∇WV, V 〉 dt

= 2

∫ 1

0

〈∇VW,V 〉 dt because of the symmetry

= 2

∫ 1

0

∇V 〈V,W 〉 − 〈W,∇V V 〉 dt

= 2 〈V,W 〉
∣∣∣∣γ0(1)

γ0(0)

− 2

∫ 1

0

〈W,A〉 dt,

since ∇V 〈V,W 〉 is a “full derivative” in t. �

If the variation keeps the endpoints, then the field W vanishes at
these points and the first term above disappears.

Theorem 15.3. The functional E achieves a critical point on γ0, if
and only if A = ∇V V vanishes identically, i.e., γ0 is a geodesic.

Proof. If not, then one can always construct a perturbation such that
W = ρ(t)A with ρ(0) = ρ(1) = 0 and ρ(t) > 0, which would yield a
nonzero value to the integral. �

15.4. Second variation. In a similar way one can consider two-parametric
perturbation producing two fields W1,W2 along the curves, and con-
sider the corresponding bilinear form.

The computation yields

∂2E

∂s1∂s2

∣∣∣∣
s1=s2=0

= −2

∫ 1

0

∇W2 〈W1,∇V V 〉 dt

= −2

∫ 1

0

〈∇W2W1,∇V V 〉+ 〈W1,∇W2∇V V 〉 dt

= −2

∫ 1

0

〈W2,∇W1∇V V 〉 dt since on the geodesic curve ∇V V = 0.

But we have the identity (symmetry of the connection)

∇W1V = ∇VW1,

and by definition of the Riemann curvature,

∇W1∇V V −∇V∇W1V = R(V,W1)V
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(recall that all fields commute). Therefore

∇W1∇V V = R(V,W1)W +∇V∇W1V = R(V,W1)W +∇V∇VW1

1

2

∂2E

∂s1∂s2

∣∣∣∣
s1=s2=0

= −
∫ 1

0

〈
W2,∇2

VW1 +R(V,W1)V
〉

dt.

Remark 15.1. The integral∫ 1

0

〈
W2,∇2

VW1 +R(V,W1)V
〉

dt

is a bilinear form on vector fields W1,W2 along the geodesic curve γ. It
is in fact symmetric (as the Hessian of a smooth functional E(·), but
this is completely non-obvious from its explicit expression.

15.5. Degeneracy of the action. One can easily get convinced that
on small enough curves the action functional is positive definite: its
Hessian (computed above) is positive definite quadratic form on vector
fields along any sufficiently short geodesic curve. The situation may
change if we consider longer curves.

Definition 15.2. A vector field J along a geodesic curve γ is called
the Jacobi field, if

∇2
V +R(V, J)V = 0.

In coordinates it becomes a second order linear (matrix) equation of
the form

J̈(t) = A(t)J(t), A(t) = R( ·V (t))V (t), J(t) ∈ Rn, A(t) ∈ Matn(R),

and it has 2n linear independent solutions on any interval.
A Jacobi field with zero boundary conditions J(0) = J(1) = 0, if

it exists, implies that the (infinite dimensional) quadratic form E ′′ is
degenerate (and this raises suspicion that it might not yield the mini-
mum to the action). In fact, the Jacobi field with the initial condition
J(0) = 0 can be seen as the linearization of the equation ∇V V = 0 for
geodesics.

15.6. Pencil of geodesics. Assume that we have a one-parametric
family of curves γs, all defined on [0, 1] and starting at a common point
a = γs(0) for all s ∈ (R1, 0). Then the vector field

W =
∂γs
∂s

∣∣∣∣
s=0



CALCULUS ON MANIFOLDS 61

along γ0 is a Jacobi field. Indeed, since ∇V V ≡ 0 for all t, s, we can
differentiate it in s, and again using symmetry of ∇ and the definition
of R, conclude that

0 = ∇W∇V V = ∇V∇WV + (RV,W )V = ∇V∇VW + R(V,W )V.

In fact, this computation does not depend on whether the deformation
fixes the endpoints or not.

Thus the curvature tensor is responsible for the behavior of geodesics
infinitely close to V : if it is negative, then they spread exponentially
from each other, otherwise there are focal points where geodesics get
focused after initially going in different directions.
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16. Lie groups and Lie algebras

16.1. Definitions. A smooth manifold G is called a Lie group, if it car-
ries the group structure (i.e., points can be multiplied between them-
selves according to a group law), and for each element g ∈ G the
application G × G → G, (g, h) 7→ gh−1 is smooth. One can instantly
see that in this case the maps lg : h 7→ gh, rg : h 7→ hg and h 7→ h−1

are smooth self-maps of G for any g. They are called left shift, right
shift and reciprocal involution of G.

The unit of the group will be denoted by e and it obviously will be
a very distinguished point of G.

Lie groups can be commutative or not, and usually we will assume
them to be connected. For non-connected group, the component Ge

containing e is a normal subgroup and the quotient G/Ge is a discrete
(zero-dimensional) group (Prove that!).

16.2. Examples. Discrete groups (zero-dimensional) are trivial and
not interesting for us.

We list the principal examples of (finite-dimensional) Lie groups4.

(1) Linear spaces Rn with the usual structure of Abelian additive
group.

(2) The multiplicative groups C∗ = C r {0} and the unit circle
T 1 = {|z| = 1} ⊆ C∗, also Abelian.

(3) Tori Rn/Zn, also Abelian.
(4) The general linear group GL(n,R) of real nondegenerate n×n-

matrices.
(5) The special linear group SL(n,R) = {M ∈ GL(n,R) : detM =

1} of matrices with the unit determinant.
(6) The orthogonal group O(n,R) = {M ∈ GL(n,R) : 〈Mx,My〉 =
〈x, y〉} of orthogonal matrices preserving the Euclidean struc-
ture on Rn (rigid rotations around the origin and reflections).

(7) The special orthogonal group SO(n,R) = {M ∈ SO(n,R) :
detM = 1} orientation-preserving rotations.

Basically, the group of linear operators preserving any algebraic struc-
ture on Rn (symplectic, complex for even n etc.) is a Lie group. E.g.,
upper-triangular nondegenerate matrices preserve a complete flag of
subspaces in Rn.

16.3. Constructions. The standard group-theoretic constructions yield
more Lie groups.

4Infinite-dimensional Lie groups are also immensely important.
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(1) Cartesian (direct) product.
(2) Semidirect product (amalgam). E.g., the group SO(n,R)nRn of

all rigid orientation-preserving transformations of a Euclidean
space. The explicit formula for the composition (M, v) · (N,w)
can be derived from the formula (M, v) · x = Mx + v for all
x ∈ Rn.

(3) Quotient groups G/G′ in the case where G′ is a normal discrete
subgroup in G.

16.4. Invariant vector fields and Lie algebras. Unlike general man-
ifolds, the Lie groups naturally come equipped with a flat connection
(actually, two of them). By definition, any Lie group G acts on itself by
the left shifts lg : h 7→ gh. Such shift takes e ∈ G into g ∈ G, moreover,
any two points g, h ∈ G can be transformed one into the other by the
unique left shift, lhg−1(g) = h. The differential dlhg−1 : TgG→ ThG pro-
vides the parallel transport between the tangent spaces at these points,
which is independent of any curve connecting g with h.

Thus for any vector v ∈ TeG tangent to G at the unit point of the
group can be carried out to any point g by the differential dlg(v) ∈ TgG,
together forming the vector field X which is left invariant, dlgX = X
for all g ∈ G. Note that there are no nontrivial left-invariant functions
on G except for constants (why?).

One can instantly see that the property of being left invariant is
preserved by the algebraic operations (linear combinations) and com-
mutator. The flow of any invariant vector field commutes with any left
shift.

Conversely, any left invariant vector field X is uniquely defined by
its value X(e) ∈ TeG. Thus the space of all invariant vector fields is
finite-dimensional and isomorphic to TeG. The operator of commutator
becomes then a bilinear non-commutative operator on TeG, satisfying
the standard conditions

[X, Y ] = −[Y,X], [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]]. (32)

Definition 16.1. A finite-dimensional linear space g equipped with
a bilinear operation (32), is called the Lie algebra. The operation is
called the Lie bracket.

The above construction with invariant vector fields shows that each
Lie group G is uniquely associated with a Lie algebra.

16.5. Examples. Any vector space can be turned into a Lie algebra
with the trivial (null) Lie bracket. Such Lie algebras, called commuta-
tive, appear as Lie algebras of Abelian Lie groups.
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The group GL(n,R) is an open subset of the linear space Rn2
=

Mat(n,R), so its Lie algebra gl(n,R) consists of all matrices. The Lie
bracket is given by the matrix commutator [X, Y ] = XY − Y X.

For all other subgroups the Lie algebras will be linear subspaces of
gl(n,R) with the commutator as the Lie bracket. To compute then it
suffices to find these subspaces explicitly.

Since det(E + tX) = 1 + t · trX + o(t), the special linear Lie algebra
sl(n,R) = {X : trX = 0} consists of traceless matrices.

In turn, if E+tX+· · · is orthogonal, (E+tX+· · · )(E+tX∗+· · · ) =
E, the special orthogonal Lie algebra so(n,R) = {X : X∗ = −X}
consists of antisymmetric matrixes.

Let X1, . . . , Xn ∈ g, n = dimG = dim g be a basis in the Lie algebra.
Then the Lie bracket is completely determined by the collection of real
numbers {cijk} ∈ R3n such that

[Xi, Xj] =
n∑
k=1

cijkXk.

These numbers are called the structural constants, and they satisfy the
condition cijk+cjik = 0 and another one, implied by the Jacobi identity.

16.6. Curvature and torsion of the Lie connection. The curva-
ture of the connection induced on the Lie group, is zero. If X, Y ∈ g
are two invariant vector fields, then their integral trajectories are ge-
odesic, moreover, ∇XY = 0. Thus the torsion ∇XY −∇YX − [X, Y ]
coincides with the Lie bracket up to the sign.

16.7. Maurer–Cartan forms. In the same way using the left shifts,
one can identify all cotangent spaces T ∗gG with the cotangent space
at the unity of the group and introduce the n-dimensional space of left
invariant 1-forms from Λ1(G), called the Maurer–Cartan forms, dual
to g. This construction immediately generalizes for invariant k-forms.

For an invariant form ω and invariant field X the value ω(X) is an
invariant function, i.e., a constant. Thus

dω(X, Y ) = −ω([X, Y ]).

Choosing a basis of invariant 1-forms ω1, . . . , ωn, one can express their
exterior derivatives as linear combinations,

dωi =
∑
j<k

c′ijk ωj ∧ ωk.

One can easily express the structural constants c′ijk via cijk in the case
where ωi are dual to Xj as above, ωi(Xj) = δij.
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16.8. Interplay between G and g. Morally, g carries only lineariza-
tion data about the group structure on G. However, it turns out that
these data are sufficient to reconstruct precisely large enough piece of
G from g. In particular, for connected simply connected Lie groups
g uniquely defines G. However, globally this no longer holds: com-
pare various Abelian Lie groups with isomorphic (commutative) Lie
algebras, in particular, tori with the Euclidean spaces.

Example 16.1. Any Lie subgroup H ⊆ G is associated with a Lie
subalgebra h ⊆ g. The inverse in general is not true, or, more precisely,
depends on the topology. Consider the rational and irrational windings
of the torus.

Theorem 16.1. Let G,H be two Lie groups with the Lie algebras g, h
respectively, and assume that G is simply connected. Then any Lie
algebra homomorphism φ : gh extends to a Lie group homomorphism
(smooth map preserving the group structure) f : G→ H such that df =
φ.

16.9. The exponential map. Let X ∈ g be an element of the Lie
algebra of G, interpreted as a left invariant vector field. Then the
trajectory of this vector field through the unit is a map t 7→ g(t), such
that g(0) = e, ġ(0)e = X(e). One can instantly see that the invariance
of X implies that g(t+ s) = g(t)g(s). That is, g(·) is a homomorphism
of the commutative Lie group R to G, which sends d

dt
into X(e), so

that we have ġ(t) = dlg(t)X(e).

Definition 16.2. The exponential map exp: g → G is the map that
sends each vector X ∈ TeG ' g into the point expX = g(1), where
g(·) : R→ G is the above one-parameter subgroup.

Theorem 16.2. The exponential map is a local diffeomorphism be-
tween (g, 0) and (G, e), tangent to the identity.

However, globally the exponential map may cease to be a diffeomor-
phism. Example: exp: R1 → T1, exp x = e2πix.

For the matrix group GL(n,R) one can explicitly find a one-parametric
subgroup tangent to the given vector X ∈ gl(n,C) at the “origin” (the
unit matrix E),

exp tX =
∞∑
k=0

tk

k!
Xk.

It converges for all t ∈ R and all X ∈ gl(n,R) and exp(t + s)X =
exp tX ·exp sX since the matrices sX and tX commute with each other
and can be substituted into the formal identity etxesx = e(t+s)x. The
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last identity implies that d
dt

∣∣
t=0

exp tX = X, that is, the exponential
series indeed is tangent to the prescribed velocity vector X.

16.10. About notations. The readers have a full right to be frus-
trated by the notation: indeed, the square braces [X, Y ] in these notes
were used for several seemingly unrelated things:

(1) Commutator of two elements in a an arbitrary group or algebra,
[X, Y ] = XY − Y X, say, in a matrix group;

(2) Commutator of two vector fields X, Y ∈X = X (M);
(3) The bracket operation in a Lie algebra g.

However, these things are actually the same.
Consider the infinite-dimensional Lie group Diff(M) of C∞-smooth

self-diffeomorphisms of a manifold M with the operation of compo-
sition. Then the tangent space to this group at the identity is the
space X (M) of smooth vector fields: if γ : (R1, 0)→ Diff(M), t 7→ Ft,
F0 = id is a smooth curve in the group through the origin, then the
corresponding vector field at a point a ∈M is the vector X(a) ∈ TaM
tangent to the curve t 7→ Ft(a) on M .

The exponential map will then be flow map,

exp: X 7→ expX = F 1, where {F t
X}t∈R is the flow map of X.

It is not surjective anymore, since the “manifold” Diff(M) is infinite-
dimensional. Thus X (M) is an infinite-dimensional Lie algebra, with
the bracket defined by the commutator of the vector fields.

In a similar way we can consider the infinite-dimensional vector space
C (M) and the infinite-dimensional Lie subgroup G = Aut C (M) of C-
linear automorphisms of this algebra inside the “general linear” group
GL(C (M)) of linear invertible self-maps of the C-space C (M). The
Lie algebra g of G consists of derivations of C (M), and exactly as in
subgroups of GL(n,R) the bracket is defined by the commutator of
derivations [X, Y ] = XY − Y X.

However, a systematic treatment of infinite-dimensional Lie groups
is far beyond the scope of these notes.
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17. Symplectic manifolds and Hamiltonian
dynamics

17.1. First vs. second order equations. The Newtonian laws of
mechanics have the form of ordinary differential equations, but of sec-
ond (rather than the first) order: the forward behavior of a system is
determined by its initial location and the initial velocity, very much
like the equation for geodesics (which are in fact equations of a free
motion in curved space without acting forces). In presence of forces
the equations become more complicated but retain the second order.

This means that the natural phase space for mechanical equation
should be the tangent bundle TN of a smooth manifold (the configu-
ration space), which is even-dimensional. The corresponding equations
should take the form then

ẋi = vi, v̇i = Fi(x, v), i = 1, . . . , n

(in the non-autonomous case Fi may explicitly depend on time). How-
ever, not every vector-function F = (F1, . . . , Fn) may appear in the
right hand side: the Newton laws restrict very strongly the admissible
things (think about conservation of energy, for instance, if the system
has no friction).

To avoid possible confusion: here and below we consider only con-
servative mechanical system, without friction, in which the full energy
(what it is?) is preserved.

It turns out that rather than studying vector fields on the tangent
bundle, it is much more natural to consider a dual space, vector fields on
the cotangent bundle T ∗N which possesses an amazing extra structure,
called symplectic form.

17.2. Symplectic structure. Let N be a smooth manifold and T ∗N
is cotangent bundle, the union of all duals to tangent spaces T ∗N =⋃
x∈N T

∗
xN . This bundle has a natural projection π : T ∗N → N on

the base. In the local coordinates x1, . . . , xn the coordinates on T ∗xN
are denoted by p1, . . . , pn so that pi(∂/∂xj) = δij. By construction,
dimT ∗N = 2 dimN is always an even number 2n.

For physical reasons we will refer to N as the configuration space
and M as the phase space. One should imagine the coordinates xi as
the spatial coordinates of a point (or a more complicated mechanical
systems) and pi as the respective moments.

The phase space M = T ∗N is naturally equipped with a special 1-
form α. Indeed, let π : M → N be be above projection. Then for any
point a = (x, ξ) ∈M , ξ ∈ TxN , the differential dπ : TaM → TaN is well
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defined and takes any vector tangent to M at a into a vector tangent
to N at x. Then one can evaluate the ξ-component of the “point” a
of the phase space on this image vector tangent to the configuration
spaces. This defines a 1-form.

In the coordinates the above verbose definition is described by a
much simpler expression:

α =
n∑
i=1

pi dxi.

Definition 17.1. The canonical symplectic structure on T ∗M is the
differential 2-form ω = dα. In the local canonical coordinates,

ω =
n∑
i=1

dpi ∧ dxi. (33)

One can immediately verify that the 2-form ω on M is nondegenerate
in the following sense:

∀v ∈ TaM ∃w ∈ TaM such that ω(v, w) 6= 0.

This is the same as to say that the (antisymmetric) matrix of ω in any
basis in TaM is nondegenerate, i.e., has nonvanishing determinant.

Definition 17.2 (main). A symplectic manifold is a manifold equipped
with a nondegenerate 2-form ω, called symplectic structure.

Remark 17.1. Since det(−A) = (−1)n detA, an odd-sized antisym-
metric matrix cannot be nondegenerate, hence a symplectic manifold
must be even-dimensional.

Example 17.1. The simplest example of a symplectic manifold is the
plane with the (oriented) area as the symplectic structure.

17.3. Hamiltonian vector fields. In the same way as the symmet-
ric Riemannian structure allows to identify vectors with covectors and
make a differential of function df , born as 1-form, into the vector field
grad f (note, however, that not any vector field is a gradient), the
symplectic structure allows to do the same.

Definition 17.3. A vector field X ∈X (M) on a symplectic manifold
is called locally Hamiltonian5, if iXω = ω(X, · ) ∈ Ω1(M) is closed.
The field is called Hamiltonian, if iXω = dH is exact. The function
H ∈ C (M) is called the Hamiltonian6 of the field X.

5The word Hamiltonian is used as an adjective here.
6And here Hamiltonian is a noun. Sorry about that.
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Thus Hamiltonian vector fields are in a sense “skew-gradients” of the
respective Hamiltonians. From the computational point of view, they
are much easier to deal with: a Hamiltonian vector field is defined by
one function of 2n arguments, rather than by 2n such functions. But, of
course, the primary importance of the Hamiltonian vector fields roots
in the fact that the differential equations of the (frictionless) celestial
dynamics are Hamiltonian.

Example 17.2. If ω =
∑

dpi ∧ dxi, then for a Hamiltonian H =
H(x, p) the Hamiltonian vector field is given by the equations.

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

In particular, if H(x, p) = 1
2
〈p, p〉 = 1

2

∑
p2
i is a positive definite qua-

dratic form then
ẋ = p, ṗ = 0.

This is the equation of a unit mass in the empty Euclidean space, if we
interpret p as the vector of momenta.

More generally, on every Riemannian manifold N the Riemann struc-
ture defines a positive definite quadratic form g = 〈v, v〉 on each tan-
gent space TxN , which in turn induces an isomorphism between TxN
and T ∗xN and allows to bring g as a positive definite quadratic form
K(p) on T ∗xN . This form, considered as a Hamiltonian, gives rise to
the system of the second order, whose solutions will be geodesic curves
on N .

Remark 17.2. Passage from g to K has nothing to do with the differ-
ential structure on the manifold, this is purely linear algebraic trans-
form called the Legendre transform. It associates with a positive def-
inite quadratic form q(v) = 1

2
〈Av, v〉 on a Euclidean space, another

form K(p) = maxv 〈p, v〉 − q(v). The maximum of the right hand side
is achieved if p = Av, i.e., when v = A−1p and is equal to 1

2
〈A−1p, p〉.

Problem 17.1. Write the equation for the case where H(x, p) =
1
2
〈p, p〉 + U(x), where U is a function of the x-variables only (the po-

tential).

17.4. Conservation laws.

Theorem 17.1. The flow of any locally Hamiltonian vector field pre-
serves the symplectic structure: if diXω = 0, then LXω = 0.

Conversely, if LXω = 0, then X is locally Hamiltonian.

Proof.
LXω = iXdω + diXω = 0. �
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The nth power ω ∧ · · · ∧ ω is the (oriented) volume form on M .

Corollary 17.1. The flow of any locally Hamiltonian vector field is
volume-preserving. �

Theorem 17.2. The Hamiltonian function H is preserved by the cor-
responding Hamiltonian flow.

Proof.

LXH = iXdH = iX iXω = ω(X,X) = 0. �

17.5. Poisson brackets. Obviously, the commutator of two locally
Hamiltonian vector fields is locally Hamiltonian:

L[X,Y ]ω = (LXLY − LYLX)ω = 0− 0 = 0.

A simple computation yields for two Hamiltonian vector fields X =
sgradH, Y = sgradG,

ω(X, Y ) = iX iY ω = LXG = −LYH.

Definition 17.4. The above function is called the Poisson bracket of
H, G and denoted by {H,G}.

The elementary computation yields

sgrad{H,G} = [sgradH, sgradG].

This implies that the Poisson bracket satisfies the Jacobi identity,

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0.

Example 17.3. The canonical coordinates (xi, pi) considered as func-
tions on the standard symplectic manifold, have the following Poisson
brackets:

{xi, xj} = 0, {pi, pj} = 0, {xi, pj} = δij.

Theorem 17.3. The algebra of functions C (M) on a symplectic man-
ifold, is a Lie algebra with respect to the Poisson bracket. The cor-
responding Hamiltonian vector fields form a Lie subalgebra of the Lie
algebra of vector fields X (M) with the commutator [ · , · ] as the Lie
bracket. The map H 7→ sgradH is a homomorphism of Lie algebras,
whose kernel consists of constants, if M is connected.



CALCULUS ON MANIFOLDS 71

17.6. First integrals. A function f is called the first integral of a
vector field X, if Xf = LXf = 0. If a vector field on an m-dimensional
manifold has m− 1 first integrals f1, . . . , fm−1 with linear independent
differentials near a point a, then the field is integrable: its trajectories
are defined by the common level curves {f1 = c1, . . . , fm−1 = cm−1}.
Locally the converse is true.

A Hamiltonian vector field X = sgradH on a symplectic manifold
(M,ω) always has at least one first integral H. The Jacobi identity
means that the Poisson bracket of two first integrals is a first integral
again. However, the new integrals may well turn out to be functionally
dependent with the previously known integrals.

Yet there is a preciously rare case of completely integrable systems,
which have the maximal number of the first integrals.

Definition 17.5. A Hamiltonian vector field X with the Hamiltonian
function H on a 2n-dimensional symplectic manifold is called com-
pletely integrable, if there are n functions f1, . . . , fn, f1 = H, with
linear independent at every point differentials, such that {H, fi} = 0.

If a completely integrable system happens to live on the simple space
R2n and a generic level surface SI = {f1 = I1, · · · , fn = In} is
compact, then one can claim very strong statement about the dynamics
of the field X:

• Each SI , I ∈ Rn, is a torus; the values of the functions fi can
be chosen as coordinates on M2n;
• One can find a local tuple of coordinates ϕi ∈ R mod Z, such

that the collection (I, ϕ) is a symplectic coordinate system, i.e.,
ω =

∑
dIi ∧ dϕi; the I-coordinates are called actions, the re-

spective variables ϕ, naturally, angles.
• In these coordinates X is a Hamiltonian vector field with the

Hamiltonian H = H(I) depending only on the action variables
I; the flow of X is given by the differential equations

İi = 0, i =, . . . , n, ϕ̇i = ρi(I), i = 1, . . . , n.

The last set of equations describes a quasiperiodic motion on the tori,
whose dynamics depends on the existence of arithmetic relationships
between the respective frequences ρ(I). For a generic value of I the col-
lection (ρ1(I) : · · · : ρn(I)) independent over Q, so the trajectories are
everywhere dense on the torus. Resonances may change this behavior.

17.7. KAM–theory. A small perturbation of a completely integrable
Hamiltonian H = H(I) in general destroys its symmetries (first inte-
grals), although the system remains Hamiltonian. It turns out, and this
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was discovered in various settings by Kolmogorov, Arnold and Moser,
that the majority of the invariant tori, described above, survive if the
perturbation is sufficiently small, and only resonant and near-resonant
tori may disappear. This has very important consequences for the sta-
bility of celestial mechanics and at the same time explains the origin
of stochastic-like (“chaotic”) behavior.

17.8. Symplectic geometry. A real linear even-dimensional space
R2n equipped with a non-degenerate antisymmetric bilinear form [ · , · ],
is called the symplectic space. We abuse the term and say that two
vectors are orthogonal, v ⊥ w, if [v, w] = 0. Note that, unlike in
the symmetric case, every vector is orthogonal to itself. The non-
degeneracy condition means that there is no vector orthogonal to the
entire symplectic space, so the orthogonal complement v⊥ is always
(2n− 1)-dimensional.

A linear map between the symplectic spaces into itself is called sym-
plectic, if it respects the corresponding structure. In particular, a self-
map S is symplectic if and only if [Sv, Sw] = [v, w] for any two vectors.

Theorem 17.4. Any symplectic space of even dimension 2n always
has a basis

v1, . . . , vn, w1, . . . , wn
such that

[vi, vj] = [wi, wj] = 0, [vi, wj] = δij.

Therefore all symplectic spaces of the same dimension are isomorphic.

This theorem is analogous to the theorem about existence of an or-
thonormal basis for a symmetric bilinear form (scalar product). How-
ever, there is an enormous difference between the symplectic and Rie-
mannian case. However, in the symmetric case we know that it is in
general impossible to find local coordinates x1, . . . , xn on a Riemann-
ian manifold in such a way that the metric will take the form

∑
dx2

i :
the latter is flat (zero curvature), which might not be the case for the
initial metric.

In the symplectic case there is no similar obstruction.

Theorem 17.5 (G. Darboux). All symplectic structures are locally
equivalent to the structure defined by the form

∑
dpi ∧ dxi as above.

The proof of this result is a two-liner, perhaps one day I will copy it
here.

This local statement implies, among other things, that two, say,
topological disks on the plane can be mapped one to the other by a
symplectic (area preserving) map if and only if their areas are equal.
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This might lead to a (wrong) conclusion that the symplectic geometry
has no invariants beyond obvious ones. In 1985 M. Gromov discovered
a surprising fact, called the Non-squeezing theorem: A ball of unit
radius in the standard symplectic space R2n cannot be mapped into a
sufficiently thin cylinder.

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

This result paved a way to the immensely rich theory which is called
today Symplectic Topology.
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18. Complex manifolds

18.1. A philosophical remark on complex numbers. The field C
of complex numbers is obtained by an algebraic extension: the root(s)
of the equation x2 +1 = 0 are added to the field of reals R. It turns out
that C is both topologically complete and algebraically closed. There
were absolutely no reasons for those two very useful properties coincide.
Although the field C cannot be ordered, it contains the ordered subfield
R which adds to the richness of the corresponding construction.

We denote the newly added numbers by ±i, but it impossible to
distinguish between these Siamese twins: the swap i 7→ −i induces the
(Galois) automorphism of C/R, called the complex conjugacy:

x+ iy = x− iy, x, y ∈ R.

The conjugacy is continuous, keeps all field operations in C and is
identical on R.

Any polynomial from C[x, y] can be rewritten as a polynomial from
two independent variables z = x+iy and z̄ = x− iy, using the transfor-
mation x = 1

2
(z+ z̄), y = i

2
(z− z̄). If the polynomial is real, p ∈ R[x, y],

then its rendering in C[x, y] is symmetric: p(z̄, z) = p(z, z̄). Indeed, if
cij = c̄ij, then∑

cij(z + z̄)i(i(z − z̄))j =
∑

cij(z̄ + z)i(i(z̄ − z))j = p(z̄, z).

Polynomials which depend only on z and not on z̄, are holomorphic
functions on C.

18.2. Linear theory. The spaces Cn and R2n are isomorphic as lin-
ear R-spaces. From the “real” point of view the complex structure
(multiplication by i) is an R-linear operator J : R2n → R2n such that
J2 = − id. Presence of such operator allows to define the complex
multiplication

C× R2n → R2n, (a+ ib)v = av + bJv, v ∈ R2n.

A map A : R2n → R2n is C-linear, if and only if it commutes with J ,
AJ = JA. A tuple of vectors (v1, . . . , vn) ∈ R2n is a C-basis of this
space, if {v1, . . . , vn, Jv1, . . . , Jvn} is the R-basis of R2n.

This process can be applied to a C-space V ' R2n. Considered as an
R-linear space V R, it has a R-linear self-map J with the above property,
which in a suitable R-basis has the matrix

J =

(
E

−E

)
, Ethe identity matrix.
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The operator J has 2n eigenvalues ±i, each with multiplicity n, but is
not diagonal, neither can it be diagonalized without additional complex-
ification: one has pass from V R to the linear space V R⊗RC = V RC. The
latter is a C-space of complex dimension dimC V

RC = 2n = dimR V
R =

2 dimC V .

Example 18.1. Let n = 1. Then V = C ' R2 and in the coordinates

(x, y) such that z = z + iy we have J =

(
1

−1

)
. To diagonalize J ,

we allow the coordinates to take the complex rather than real values,
and introduce two new coordinates x = 1

2
(z+w), y = i

2
(z−w), so that

z = x + iy and w = x − iy. In the new coordinates the matrix of J

becomes diagonal, J =

(
i
−i

)
.

Remark 18.1. This duplication seemingly contradicting the Occam
razor principle, can be explained rather easily: once we forgot for a mo-
ment the original complex multiplication on V , we cannot distinguish
multiplication by i from the multiplication by its conjugate ī = −i,
thus any unification of real and complex structures must be invariant
with respect to the automorphism α 7→ ᾱ of C.

Remark 18.2. When passing from the real coordinates (x, y) on V R to
the complex coordinates on V RC, it is natural to call the first coordinate
again z. The other coordinate w is conveniently denoted by z̄.

Thus if we start with the complex space V = Cn with the coordinates
z1, . . . , zn, zi ∈ C, the result V RC = C2n is naturally equipped with
the coordinates z1, . . . , zn, z̄1, . . . , z̄n. These are independent complex
coordinates which take the conjugate values only on the real subspace
Rn ⊂ Cn.

The structure induced by the operator J on the even-dimensional
space V RC, makes subspaces L of this space unequal. Recall that the
eigenvalues of J are ±i. This splits V RC into the direct sum of two
eigenspaces, V RC = V ′ + V ′′, where

V ′ = {v ∈ V RC : Jv = iv}, V ′′ = {v ∈ V RC : Jv = −iv}.

Obviously, dimC V
′, V ′′ = n. The first subspace can naturally be iden-

tified with the initial C-space V , the other is called the conjugate.
There above splitting induces another involutive operation on V RC,

also called complex conjugacy (extending the conjugacy (a+ib) = z 7→
z̄ = a− ib) and denoted by the bar, v 7→ v̄. This operator is R-linear,
but C-antilinear : iv = īv̄ = −iv̄. In the coordinates introduced above,
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the conjugacy exchanges

·̄ : V RC → V RC, (z, z̄) 7→ (z̄, z).

This notation allows to write the above splitting as V RC = V + V .

18.3. Hermitian forms. There is no suitable definition of positivity
over C (no way to introduce a complete order compatible with the
natural axioms), so it is impossible to introduce a properly behaving
scalar product (the Euclidean structure).

The nearest best choice is the Hermitian structure, which involves the
complex conjugacy. It capitalizes on the fact that zz̄ > 0 (and positive
for C 3 z 6= 0). This is the pairing Cn×Cn → C, which is sesquilinear
bilinear over R, C-linear in the first argument but antilinear in the
second argument,

〈αu, v〉 = α 〈u, v〉 , 〈u, αv〉 = ᾱ 〈u, v〉 .

The model example is given by the formula 〈u, v〉 =
∑n

i=1 uiv̄i. Any
other sesquilinear form that is positive, 〈u, u〉 > 0, 〈u, u〉 = 0 ⇐⇒
u = 0 ∈ Cn, is equivalent to it.

It is an important fact that the real part ( · , · ) of the Hermitian
structure is R-bilinear and symmetric, hence a Euclidean structure
(genuine scalar product, positive on nonzero vectors), while the imagi-
nary part [ · , · ] is antisymmetric and nondegenerate, hence a symplec-
tic structure on Cn,

Re 〈u, v〉 = (u, v), Im 〈u, v〉 = [u, v].

18.4. Dual spaces and their decomposition. For an R-linear even-
dimensional space R2n the usual dual, the space if R-linear maps R2n →
R, is isomorphic to R2n∗. If V is a C-linear space, forgetting the com-
plex structure we obtain the HomR(V,R). By tensoring out with C we
construct the complexification of the latter space.

Abusing notation, we will use the star notation to denote for a C-
linear vector space V this complexified dual,

V ∗ = HomR(V,C) = HomR(V,R)⊗R C.

This larger space naturally splits into C-linear and C-antilinear maps
ξ : V → C,

V ∗1,0 = {ξ(αv) = αξ(v)}, resp., V ∗0,1 = {ξ(αv) = ᾱξ(v)},

(suffices to requite these conditions for α = i). Note that V ∗ is a
C-linear space, and dimC V

∗ = 2n = 2 dimC V = dimR V .
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If we equip Cn with the coordinates z1, . . . , zn, xi + iyi = zi ∈ C,
then the (constant) forms dzi = xi + idyi and dz̄i = dxi− iyi constitute
the basis of Cn∗.

This splitting is naturally dual to the splitting of V RC = V + V .

18.5. Higher exterior powers. We can form the higher exterior pow-
ers
∧k V∗, k = 1, . . . , 2n, as multi-R-linear antisymmetric forms on V

with values in C. The decomposition V ∗ = V ∗1,0 ⊕ V ∗0,1 yields then the
decomposition

k∧
V ∗ =

∑
p+q=k

V ∗p,q,

where V ∗p,q is the space spanned over C by monomials of the form
ξ1 ∧ · · · ∧ ξp ∧ η1 ∧ · · · ∧ ηq with ξi ∈ V ∗1,0, ηj ∈ V ∗0,1.

18.6. Holomorphic functions and maps. A map f : U → Cm, U ⊆
Cn, is holomorphic at a point a ∈ U , if its differential (tangent map)
df : Cn → Cm is C-linear. The map is holomorphic in U , if it is
holomorphic at every point of U . The map is a biholomorphism, if
its inverse is also holomorphic at all points of the image f(U). The
set of all C-linear self-maps of Cn into itself is a group (denoted by
GL(n,C)). Composition of holomorphic maps is again holomorphic.
The space of holomorphic maps U → C (holomorphic functions) is
denoted by O(U). A basic theorem of complex analysis claims that
O(U) ⊂ C (U), that is, existence of “just one derivative” (C-linearity
of df) implies infinite differentiability of the latter.

18.7. Holomorphic manifolds and complex differential forms
on them. A holomorphic manifold is a topological space M equipped
with an atlas of charts (homeomorphisms) zα : Uα → Cn so that M =⋃
α Uα and all transition maps zα ◦ z−1

β are biholomorphisms.
The tangent spaces TaM to M at different points a ∈ M are natu-

rally isomorphic to Cn. The complex cotangent space T ∗a is defined as
the above complex dual space, T ∗aM = HomR(TaM,C), dimR T

∗
aM =

2 dimC T
∗
aM = 4n.

A (smooth complex) differential 1-form is a C∞-smooth map which
selects ξ(a) ∈ T ∗aM for each a. By this definition, locally any such form
can be represented as

ξ =
n∑
i=1

ai(z) dzi + bi(z) dz̄i, ai, bi ∈ C (U)
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with smooth complex-valued coefficients. To stress the fact that these
coefficients are not necessarily holomorphic, sometimes we write ai(z, z̄),
bi(z, z̄).

Respectively, we have the C (U)-module Ωp,q(U) of forms of the type
(p, q), locally representable as∑

i1<···<ip, j1<···<jq

ai,j(z) dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · dz̄jq .

Ona can verify that if a form is of type (p, q) in some chart, then it is
of the same type in any other chart. This follows from the fact that
the splitting into holomorphic and antiholomorphic forms is preserved
by holomorphic maps.

18.8. How do we differentiate? The operator of exterior derivation
is uniquely defined by its values on functions, and we don’t have much
freedom if we want it to vanish on the complex constants as well as on
the real ones. Thus if f(z) = u(z) + iv(z) ∈ C (U), then df = du+ idv,
if u, v : U → R are C∞-smooth real and imaginary parts of a complex
valued function f : U → C.

However, the splitting into the real and imaginary parts is not as
convenient, as the splitting into the holomorphic and antiholomorphic
parts.

Definition 18.1. Consider the following differential operators on C (U),
which in the coordinates (z1, . . . , zn), zi = xi + iyi, take the form

∂i =
∂

∂zi
=

1

2

(
∂

∂xi
− i

∂

∂yi

)
, ∂̄i =

∂

∂z̄i
=

1

2

(
∂

∂xi
+ i

∂

∂yi

)
.

The operators ∂i, ∂̄i are Leibniz-respecting C-linear operators C (U)
to itself, so can be considered as vector fields on U .

Proposition 18.1 (Cauchy–Riemann conditions). A function f ∈
C (U) is holomorphic, f ∈ O(U), if and only if ∂̄if = 0 for all i =
1, . . . , n.

Proposition 18.2. The forms dzi and dz̄i are dual to the vector fields
∂i, ∂̄i:

dzi(∂j) = dz̄i(∂̄j) = δij,

with the other values vanishing, dzi(∂̄j) = dz̄i(∂j) = 0 for all i, j.

Proposition 18.3. For a smooth function f ∈ C (U) its differential
df ∈ Ω1(U) can be split as the sum of Ω1,0(U) and Ω0,1(U) parts,

df = ∂f + ∂̄f, ∂f =
n∑
1

∂if dzi, ∂̄f =
n∑
1

∂if dz̄i.
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This formula allows to extend uniquely the operator d to forms from
Ωp,q(U), placing the result into two parts, Ωp+1,0(U) and Ωp,q+1(U).
The results are nontrivial for p 6 n, q 6 n.

18.9. Holomorphic forms and vector fields. A form ω is called
holomorphic in U , if ω ∈ Ωp,0(U) and in addition, all coefficients of
this form are holomorphic functions. Then the (p, 1)-component of its
differential is identically zero, ∂̄ω = 0.

A holomorphic vector field in U is a map picking an element of
T ′aM ' TaM in a way holomorphically depending on a. In the same
way as in the real case, we can show that any holomorphic vector field
has the form

X =
n∑
i=1

ai(z)
∂

∂zi
, a1, . . . , an ∈ O(U).

Needless to say, holomorphic vector fields are closed by the Lie bracket.

19. Survey of further issues

19.1. Algebraic and analytic geometry. One can completely ignore
the fact that C ⊃ R and work only with subsets defined by polynomial
equations with complex coefficients or (in the limit case) by converging
series. The corresponding theory is very rich. Still in all what con-
cerns the topology of the corresponding varieties, one is inevitably led
to reintroducing the real subfield.

19.2. Integration. Another reason why one has to remember that
R ⊂ C is the fact that a complex (p, q)-form can be integrated only
along submanifolds (chains) N ⊆M of real dimension dimRN = p+q.

Example 19.1. For n = 1 a 1-form ω = a(z, z̄) dz + b(z, z̄) dz̄ can
be integrated along curves in U . If ω ∈ Ω1,0(U), i.e., b ≡ 0 then
dω = ∂̄ω = ∂

∂z̄
a dz ∧ dz̄. If ω is holomorhic, i.e., ∂̄a ≡ 0, then dω = 0

and
∮
γ
ω = 0 for any curve γ homologous to zero in U .

The integral of (1, 1)-form can be taken along 2-dimensional chains
in ω.

19.3. Poincaré–Grothendieck theorem. Since d = ∂ + ∂̄, we have
0 = d2 = ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2. Applied to a form of the type (p, q), this
combination yields three terms of the type (p+ 2, q), (p+ 1, q+ 1) and
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(p, q + 2), respectively. Since the spaces Ωi,j are disjoint, this implies
the three separate identities,

∂2 = 0, ∂∂̄ + ∂̄∂ = 0, ∂̄2 = 0.

The (real) Poincaré theorem claims that if U ⊆ Rn is an open convex
domain and ω ∈ Ωk(U), k > 1, such that dω = 0, then there exists
α ∈ Ωk−1(U) such that ω = dα, that is, Ker d = Im d.

The analogous complex result, called the ∂̄-lemma or Grothendick
theorem, claims that for certain type of domains U ∈ Cn we have
similar result, Ker ∂̄ = Im ∂̄.

Theorem 19.1. If U = D1×· · ·×Dn is the product of one-dimensional
domains Di ⊆ C (possibly not simply connected) and ω ∈ Ωp,q(U) with
q > 1 is such that ∂ω̄ = 0, then there exists α ∈ Ωp,q−1(U) such that
ω = ∂̄α.

19.4. Dolbeault cohomology. In a way mimicking the de Rham co-
homology, we can define the Dolbeault cohomology as the quotient
C-spaces

Hp,q(M,C) =
Ker ∂̄ ⊆ Ωp,q(M)

Im ∂̄ = ∂̄(Ωp,q−1(M)
.

However, unlike the de Rham cohomology which is topologically in-
variant, the Dolbeault cohomology is not: it depends on the complex
structure on the manifold M .

19.5. Hermitian and Kähler manifolds. The Hermitian inner prod-
uct, as was noted, consists of the symmetric real part 〈 , 〉 and the
antisymmetric imaginary part [ , ].

Definition 19.1. A complex manifold is called Hermitian, if there is
a Hermitian inner product defined on its holomorphic tangent bundle
TM =

⋃
a∈M TaM , dimC TaM = dimM .

The Hermitian structure h in local coordinates is defined by the
tensor ∑

i,j

hij(z, z̄) dzi ⊗C dz̄j

such that the matrix hij(z, z̄) is Hermitian positive definite.
The symmetric part g = 1

2
(h + h̄) is a Riemannian metric on the

holomorphic tangent bundle TRM and it is symmetric bilinear on the
corresponding complexification TRCM =

⋃
a T

RC
a M .
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The imaginary part ω = i
2
(h − h̄) is of type (1, 1) on TRCM and is

called the fundamental form. In local coordinates it takes the form∑
i,j

i

2
hij dzi ∧ dz̄j.

Since ω̄ = ω, is real antisymmetric 2-form on on TRM .

Definition 19.2. A Hermitian manifold is called a Kähler manifold,
if the fundamental form ω is closed, dω = 0 and hence defines a sym-
plectic structure on M .

Example 19.2. The complex space Cn with the standard “flat” Her-
mitian structure is a Kähler manifold. The projective space CP n is
Kähler with respect to a certain Hermitian structure called the Fubini–
Study metric. The quotient tori also are.

Complex submanifolds of the above Kähler manifolds are hereditary
Kähler, so plenty of examples can immediately be constructed.

Thus the Kähler manifolds possess simultaneously the three impor-
tant structures (Riemann, symplectic and complex) that are in the nat-
ural agreement with each other. Needless to say, this richness brings a
wealth of interesting results.

The equivalent Kählerianity conditions for dummies (here ∇ is the
Riemannian covariant derivative associated with the Riemannian part
of h):

dω = 0

∇ω = 0.

19.6. Almost complex structure and Newlander–Nirenberg the-
orem. If MR is the realification of a complex manifold and J an auto-
morphism of the tangent bundle into itself, induced by the multiplica-
tion by the constant i, then the Lie bracket operation X, Y 7→ [X, Y ]
is bilinear over C, so that [JX, Y ] = [X, JY ] = J [X, Y ].

Definition 19.3. An almost complex structure on an even-dimensional
manifold is the operator field J = {Ja : TaM → TaM} (tensor) which
apriori is variable (depending on a) satisfying the condition J2 = − id.

All linear algebraic constructions can start not from a complex vector
space V through its realification V R, but from the corresponding almost
complex structure J on a real even-dimensional space. In particular,
differential forms of the (p, q)-type can be defined for almost complex
manifolds.

However, the derivation is in general looks different. In particular,
for ω ∈ Ωp,q the exterior derivative dω is a form of total degree p+q+1,
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but it may involve types other than just (p + 1, q) and (p, q + 1): all
types (r, s) with r + s = p+ q + 1, r, s > 0, are possible.

For complex manifolds the above identity implies the integrability
condition

[JX, JY ] + [X, Y ]− J [X, JY ]− J [JX, Y ] = 0.

It turns out that this condition is equivalent to the following conditions:

(1) If X, Y are complex vector fields of type (1, 0) with smooth
coefficients, then [X, Y ] is also of type (1, 0);

(2) d = ∂ + ∂̄, that is, no “nonstandard” types appear by the
exterior derivative,

(3) ∂̄2 = 0.

Theorem 19.2 (A. Newlander–L. Nirenberg, 1957). An integrable al-
most complex structure on an even-dimensional manifold M is induced
by a genuine complex structure: there exists an atlas of complex charts
on M with biholomorphic transition maps, such that J = i.

19.7. Global issues. Necessity of the sheaf theory. Unlike smooth
functions, holomorphic functions are extremely rigid: a smallest “piece”
(knowledge of the function in any open set) uniquely determines the
possible continuation of this function with all singularities that may
occur. In practical terms there is no partition of unity by holomorphic
functions.

In practice this means that we cannot directly apply the “algebraic”
formalism which derives geometric objects from the algebra O(M) of
holomorphic functions. For instance, if M is a compact complex vari-
ety (e.g., a projective space), then there are no nonconstant functions
holomorphic on it, so O(M) = C.

The alternative is to work with functions holomorphic only in parts
of M . Yet such an approach makes it impossible to equip O(M) with
algebraic operations: the sum of two functions is defined only if their
domains have nonempty intersection, ditto other algebraic operations.

To overcome this seemingly “technical problem”, a special language
should be developed. This language is known under the brand name
Sheaf Theory. Alas, the time is over: to master this language, one
needs another semester-long course.
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20. Exam

Problem 1. A differentiable 1-form ω ∈ Ω1(M) is called involutive,
if dω is divisible by ω, that is, there exists a 1-form η ∈ Ω1(M) such
that dω = ω ∧ η.

1. Prove that an involutive form is integrable, that is, for any point
a ∈M exists. . . (complete the statement).

2. Can you guess what should be the definition of involutivity for a
tuple of 1-forms such that involutivity implies the integrability? Use
the word “ideal”.

Problem 2. The real 2-torus T2 is defined as the quotient space R2/Z2,
hence the space C (T2) can be identified with the space of double peri-
odic smooth functions on R2.

1. From this description calculate the first and second de Rham
cohomology of T2.

The Möbius band can be defined as the quotient of the plane R2 by
the identification (x+ 1,−y) ' (x, y).

2. Calculate the de Rham cohomology of the Möbius band from
this definition, including the accurate description of all relevant spaces
(note that the Möbius band is non-compact).

Problem 3. Let D be the unit disk {|z| < 1} ⊆ C with the Riemannian
metric

ρ =
2|dz|

1− |z|2
.

1. How do you understand this definition?
2. Show that the only invertible holomorphic map f : D→ D which

fixes the origin, is the rotation f(z) = cz, |c| = 1. Hint. This is the
Schwarz lemma from Complex Analysis in disguise, which in turn fol-
lows from the maximum modulus principle applied to the holomorphic
function f(z)/z. Show that the map

z 7→ z − a
1− āz

, a ∈ D,

is invertible holomorphic self-map of D. We denote by G the group of
holomorphic self-maps of D. 3. Show that G consists of isometries of
ρ: any g ∈ G preserves ρ.

4. Show that each transformation from G is circular : it sends circles
in C to circles, if lines are considered as particular case of the circles.

5. Prove that the shortest path from any point a ∈ D to the origin
is the segment of the corresponding radius. Prove that the diameters
are geodesic curves for ρ.
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6. Using symmetries from G, find and describe other geodesics, not
passing through the origin. Describe all geodesics passing through a
point 0 6= a ∈ D. Prove that for any two points a 6= b ∈ D there exists
at least one circle that passes through a and b and is orthogonal to the
unit circle {|z| = 1}, called the absolut.

7. Let H = {Im z > 0} ⊂ C be the upper half-plane and

ρ′ =
|dz|
Im z

a Riemannian metric on it. Show that H and D are biholomorphi-
cally equivalent, and each conformal map f : D → H is an isometry
conjugating ρ′ with ρ. Describe the geodesic curves on H.

8. Show that the Gauss curvature of the metric ρ′ is equal to −1.
Hint. The word show can be (only here) understood literally: if you
can find these statements in a textbook, show me where.

9∗. Suggest a Riemannian manifold with constant negative curvature
− 1
R2 , 1 6= R.

Problem 4. In this problem we will study behavior of geodesics on
non-neatively-curved surfaces.

1. Describe all geodesics on the round sphere S2 ⊆ R3.
2. Let T2 = R2/Z2 be the flat torus. Describe all geodesics on T2.

Prove that all of them are either closed (periodic), or non-selfintersecting.
Does the answer change if the lattice Z is replaced by another lattice
aZ + bZ with a, b ∈ R2 two linear independent vectors?

3. Consider a “flat” regular tetrahedron Θ2 (think of a paper model
made of 4 equilateral triangles with some edges identified). Show that
if we delete the vertices, then the remainder is a (non-complete) flat
Riemannian manifold topologically equivalent to the sphere without 4
points. Construct a closed geodesic on this manifold.

4. Show that the flat tetrahedron can be 2-covered by a flat 2-torus:
there exists a map π : T2 → Θ2 such that π−1(a) consists of two points
for any a ∈ Θ2.

Hint : consider the tiling of R2 by equilateral triangles and find out
a parallelogram made of 8 tiles which wraps twice around Θ2.

5. Describe all geodesics on Θ2 which avoid vertices (to avoid ambi-
guities). Prove that all of them are either closed, or nonselfintersecting.

6. Consider the “flat cube” K made of 8 paper squares. Make it into
a non-complete flat Riemannian manifold by deleting vertices. Com-
pute the sum of exterior angles of any geodesic non-intersecting poly-
gon containing one or more (deleted) vertices inside. Read somewhere
about the Gauss–Bonnet theorem and explain the results.
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7. Construct examples of closed geodesics on K. How many vertices
they should contain inside/outside? Why?

8. Can you find a closed geodesic 6-gon on K?
9* Can you construct a closed non-planar geodesic 6-gon?
10*. Can you construct a self-intersecting geodesic polygon on K?
11. Construct non-closed geodesics on K.

Problem 5. Consider the space R3 with the “vector”, or cross product,
defined by the usual rules:

a× b = c ⇐⇒ c ⊥ a, c ⊥ b, ‖c‖ = ‖a‖ ‖b‖ | sin∠(a, b)|,
which leaves for c one of the two possibilities; we choose one so that
the triple (a, b, c) is positively oriented.

1. Prove that this is a bilinear antisymmetric (vector-valued) oper-
ation.

2. Assume that R3 is equipped with the standard Euclidean struc-
ture. Find out how the exterior power R3∗ ∧R3∗ can be identified with
R3∗. Write the cross product through the wedge product and duality.

3. Prove by as many “independent” ways, that the cross product
satisfies the Jacobi identity.

4. Prove that R3 with the cross product chosen for the bracket, is a
Lie algebra s.

5. Represent this Lie algebra by a subalgebra of 3× 3-matrices.
6. Find a connected Lie group S for which s is a Lie algebra.
7. Explain to your closest friend-physicist how the exponential map

exp: s→ S works.
Hint : don’t hesitate to use words “infinitely small”, “infinitely close

to” etc. Explain to him/her what means the addition in the Lie algebra
s is commutative.

Problem 6 (optional). Suggest a problem of your own for future
students, which in your opinion might be instructive or fascinating.
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