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Abstract

We present a Hamiltonian framework for higher-dimensional vortex filaments (or membranes) and
vortex sheets as singular 2-forms with support of codimensions 2 and 1, respectively, i.e. singular
elements of the dual to the Lie algebra of divergence-free vector fields. It turns out that the localized
induction approximation (LIA) of the hydrodynamical Euler equation describes the skew-mean-
curvature flow on vortex membranes of codimension 2 in any R

n, which generalizes to any dimension
the classical binormal, or vortex filament, equation in R3.

This framework also allows one to define the symplectic structures on the spaces of vortex sheets,
which interpolate between the corresponding structures on vortex filaments and smooth vorticities.
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Preface

Vladimir Arnold’s 1966 seminal paper [1] in which he introduced numerous geometric ideas into hy-
drodynamics influenced the field far beyond its original scope. One of Arnold’s remarkable and, in my
opinion, very unexpected insights was to regard the fluid vorticity field (or the vorticity 2-form) as an
element of the dual to the Lie algebra of the fluid velocities, i.e., the algebra of divergence-free vector
fields on the flow domain.

In this paper, after a review of the concept of isovorticed fields, which was crucial, e.g., in Arnold’s
stability criterion in fluid dynamics, we present an “avatar” of this concept, providing a natural frame-
work for the formalism of vortex membranes and vortex sheets. In particular, we present the equation
of localized induction approximation, which turns out to be the skew-mean-curvature flow in any di-
mension. We also show that the space of vortex sheets has a natural symplectic structure and occupies
an intermediate position between vortex filaments in 3D (or point vortices in 2D) equipped with the
Marsden-Weinstein symplectic structure on the one hand and smooth vorticity fields with the Lie-
Poisson structure on them on the other hand.

Before launching into hydrodynamical formalism in this memorial paper, I would like to recall an
episode with Vladimir Igorevich, related not to fluid dynamics, but rather to his equally surprising
insights in real life: his remarks were always witty, to the point, and often mischievous.1

Back in 1986 Arnold became a corresponding member of the Soviet Academy of Sciences. This
was the time of “glasnost” and “acceleration”: novels of many formerly forbidden authors appeared in
print for the first time. Jacques Chirac, Prime Minister of France at the time, visited Moscow and gave
a speech in front of the Soviet Academy in the Spring of 1986. The speech was typeset beforehand
and distributed to the Academy members. Arnold was meeting us, a group of his students, right
after Chirac’s speech and brought us that printout. Chirac, who knows Russian, mentioned almost
every disgraced poet or writer of the Soviet Russia in his speech: it contained citations from Gumilev,
Akhmatova, Mandelshtam, Pasternak... And on the top of this printout, above the speech, was the
following epigraph in Arnold’s unmistakable handwriting:

\... � dopuwu: uspehi naxi bystry

No gde � u nas ministr-demagog?

Pust~ proberut vse spiski i registry,

� p�t~ ruble$i buma�nyh dam v zalog;

Byt~ mo�et, ih vo Franii nemalo,

No na Rusi ih net { i ne byvalo!"

A.K. Tolsto$i \Son Popova" (1873)

2

Who could take this speech seriously after such a tongue-in-cheek epigraph? As a curious aftermath,
Arnold and Chirac shared the Russia State Prize in 2007.

1At times it was hard to tell whether he was being serious or joking. For instance, when inviting the seminar participants
for an annual ski trip outside of Moscow, Arnold would say: “This time we are not planning too much, only about 60km.
Those who doubt they could make it — need not worry: the trail is so conveniently designed that one can return from
interim bus stops on the way, which we’ll be passing by every 20km.”

2English translation by A.B. Givental:

“... Our nation’s rise is, I concur, gigantic,
But demagogs among our statesmen?! Let
all rosters, in the fashion most pedantic,
be searched, I’d put five rubles for a bet:
There could be more than few in France or Prussia,
but are - and have been - none in mother Russia!”

from “Popov’s Dream” by A.K. Tolstoy (1873)
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Returning to mathematics, I think that the ideas introduced by Arnold in [1], so natural in retro-
spect, are in fact most surprising given the state of the art in hydrodynamics of the mid-60s both for
their deep insight into the nature of fluids and their geometric elegance and simplicity. In the next
section we begin with a brief survey of the use of vorticity in a few hydrodynamical applications and
discuss how it helps in understanding the properties of vortex filaments and vortex sheets.

1 The vorticity form of the Euler equation

Consider the Euler equation for an inviscid incompressible fluid filling a Riemannian manifold M
(possibly with boundary). The fluid motion is described as an evolution of the fluid velocity field v in
M which is governed by the classical Euler equation:

∂tv + (v,∇)v = −∇p . (1)

Here the field v is assumed to be divergence-free (div v = 0) with respect to the Riemannian volume
form µ and tangent to the boundary of M . The pressure function p is defined uniquely modulo an
additive constant by these restrictions on the velocity v. The term (v,∇)v stands for the Riemannian
covariant derivative ∇vv of the field v in the direction of itself.

1.1 The Euler equation on vorticity

The vorticity (or Helmholtz) form of the Euler equation is

∂tξ + Lvξ = 0 , (2)

where Lv is the Lie derivative along the field v and which means that the vorticity field ξ := curl v is
transported by (or “frozen into”) the fluid flow. In 3D the vorticity field ξ can be thought of as a vector
field, while in 2D it is a scalar vorticity function. In the standard 2D-space with coordinates (x1, x2)
the vorticity function is curl v := ∂v2/∂x1 − ∂v1/∂x2, which can be viewed as the vertical coordinate
of the vorticity vector field for the 2D plane-parallel flow in 3D. The fact that the vorticity is “frozen
into” the flow allows one to define various invariants of the hydrodynamical Euler equation, e.g., the
conservation of helicity in 3D and enstrophies in 2D.

The Euler equation has the following Hamiltonian formulation. For an n-dimensional Riemannian
manifold M with a volume form µ consider the Lie group G = Diffµ(M) of volume-preserving diffeo-
morphisms of M . The corresponding Lie algebra g = Vectµ(M) consists of smooth divergence-free
vector fields in M tangent to the boundary ∂M :

Vectµ(M) = {V ∈ Vect(M) | LV µ = 0andV ||∂M} .3

The natural “regular dual” space for this Lie algebra is the space of cosets of smooth 1-forms on M
modulo exact 1-forms, g∗ = Ω1(M)/dΩ0(M), see e.g. [4, 14]. The pairing between cosets [η] of 1-forms
η and vector fields W ∈ Vectµ(M) is given by

〈[η],W 〉 :=

∫

M

iW η · µ , (3)

3We usually denote generic elements of Vectµ(M), as well as variation fields, by capital letters, while keeping the small
v notation for velocity fields related to the dynamics.
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where iW is the contraction of a differential form with a vector field W . The Euler equation (1) on the
dual space assumes the form

∂t[η] + Lv[η] = 0 ,

where [η] ∈ Ω1(M)/dΩ0(M) stands for the coset of the 1-form η = v♭ related to the velocity vector
field v by means of the Riemannian metric on M . (For a manifold M equipped with a Riemannian
metric (., .) one defines the 1-form v♭ as the pointwise inner product with vectors of the velocity field
v: v♭(W ) := (v,W ) for all W ∈ TxM , see details in [1, 4].)

Instead of dealing with cosets of 1-forms, it is often more convenient to pass to their differentials.
The vorticity 2-form ξ := dv♭ is the differential of the 1-form η = v♭. Note that in 3D the vorticity
vector field curl v is defined by the 2-form ξ via icurl vµ = ξ for the volume form µ. In 2D curl v is
the function curl v := ξ/µ. The definition of vorticity ξ as an exact 2-form in M makes sense for any
dimension of the manifold M . This point of view can be traced back to the original papers by Arnold,
see e.g. [2, 3]

Such a definition immediately implies that:
i) the vorticity 2-form ξ := dη is well-defined for cosets [η]: 1-forms η in the same coset have equal

vorticities, and
ii) the Euler equation in the form (2) or ∂t(dη) + Lv(dη) = 0 means that the vorticity 2-form

ξ = dη is transported by (or frozen into) the fluid flow in any dimension. The latter allows one
to define generalized enstrophies for all even-dimensional flows and helicity-type integrals for all odd-
dimensional ideal fluid flows, which turn out to be first integrals of the corresponding higher-dimensional
Euler equation, see e.g. [4]. This geometric setting can be rigorously developed within the Sobolev
framework for Hs diffeomorphisms and vector fields on M for sufficiently large s, see [6]. To present
the geometric ideas and include singular vorticities we keep things formal in what follows.

Remark 1.1. This point of view on vorticity was the basis for Arnold’s stability criterion. Namely,
steady fluid flows are critical points of the restriction of the Hamiltonian (which is the kinetic energy
function defined on the dual space) to the spaces of isovorticed fields, i.e. sets of fields with diffeomorphic
vorticities. If the restriction of the Hamiltonian functional has a sign-definite (positive or negative)
second variation at the critical point, the corresponding steady flow is Lyapunov stable. This is famous
Arnold’s stability test. In particular, he proved (see e.g. [3, 4]) that shear flows in an annulus with
no inflection points in the velocity profile are Lyapunov stable, thus generalizing the Rayleigh stability
condition.

1.2 Smooth and singular vorticities

Another consequence of such a point of view on vorticity, which is of the main interest to us, is the
existence of the Poisson structure.

Let M be an n-dimensional Riemannian manifold with a volume form µ and filled with an in-
compressible fluid. As we discussed above, the vorticity of a fluid motion geometrically is the 2-form
defined by ξ := dv♭, where v♭ is the 1-form obtained from the vector field v by the metric lifting of
indices. Assume that H1(M) = 0 to simplify the reasoning below. Then the space of vorticities {ξ},
i.e. the space of exact 2-forms dΩ1(M), coincides with the dual space to the Lie algebra Vectµ(M) of
divergence-free vector fields. Indeed, Vectµ(M)∗ ≃ Ω1/dΩ0 ≃ dΩ1 where the latter identification holds
since H1(M) = 0.
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support vorticity symplectic evolution Hamiltonian
codim types structure equation

smooth ωKK
ξ (V,W ) vorticity energy

0 vorticities ξ =
∫

M ξ ∧ iV iWµ Euler equation H = 1
2

∫

M (v, v)µ
∂tξ = −Lvξ

vortex ω∂Γ∧α(V,W ) Euler ⇒ Birkhoff-Rott
1 sheets ∂Γ ∧ α =

∫

Γ α ∧ iV iWµ LIA – ? H =?

2D: point vortices ω(κj ,zj) Euler ⇒ Kirchhoff H = Kirchhoff
∑

κjδzj =
∑

κj dxj ∧ dyj LIA=0 Hamiltonian H
——————— ——————— ——————— ———————

2 3D: filaments ωMW
γ (V,W ) LIA: binormal eqn

C · δγ =
∫

γ iV iWµ ∂tγ = γ′ × γ′′ H = length(γ)

——————— ——————— ——————— ———————
any D: membranes ωMW

P (V,W ) LIA: skew mean
(higher filaments) =

∫

P iV iWµ curvature flow H = volume(P )
C · δP ∂tP = J(MC(P ))

Remark 1.2. As the dual space to a Lie algebra, the space of vorticities Vectµ(M)∗ = {ξ} has the
natural Lie-Poisson structure. Its symplectic leaves are coadjoint orbits of the corresponding group
Diffµ(M). Here such orbits are sets of fields with diffeomorphic vorticities on M , with the group action
being the action of volume-preserving diffeomorphisms on vorticity 2-forms. The Euler equation defines
a Hamiltonian evolution on these orbits.

The corresponding (Kirillov-Kostant) symplectic structure on orbits in Vectµ(M)∗ is given by the
following formula. Let V and W be two divergence-free vector fields in M , which we regard as a pair of
variations of the point ξ in Vectµ(M)∗. The Kirillov-Kostant symplectic structure on coadjoint orbits
associates to a pair of such variations tangent to the coadjoint orbit of the vorticity ξ the following
quantity:

ωKK
ξ (V,W ) := 〈d−1ξ, [V,W ]〉 = 〈η, [V,W ]〉 =

∫

M

η ∧ i[V,W ]µ =

∫

M

ξ ∧ iV iWµ . (4)

Here the 1-form η = d−1ξ is a primitive of the vorticity 2-form ξ, and [V,W ] is the commutator of the
vector fields V and W in M . Note that for divergence-free vector fields V and W their commutator
satisfies the identity i[V,W ]µ = d(iV iWµ), which implies the last equality in (4).

In this paper we deal with singular vorticities. Regular vorticities have support of full dimension,
i.e. of codimension 0 in M , while singular ones have support of codim ≥ 1. Singular vorticities form
a subspace in (a completion of) the dual space Vectµ(M)∗ = dΩ1(M). Note that since vorticity is a
(possibly singular) 2-form (more precisely, a current of degree 2), its support has to be of codim ≤ 2.
(E.g., if support is of codim = 3, it corresponds to a singular 3-form. We refer to [8] for details on
currents.)

The most interesting cases of support are of codimension 1 (vortex sheets) and codimension 2 (point
vortices in 2D, vortex filaments in 3D and vortex membranes, or higher filaments, for any dimension). In
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the next sections we start with the codimension 2 case, and deal with the codimension 1 case towards
the end of the paper. The main types of singular vorticities, as well as related to them symplectic
structures and Hamiltonian equations studied below, are summarized in the table above. While the
goal of this paper is partially expository, and various facts on vortex filament dynamics are scattered
in the extensive literature, certain results presented below (in particular, the Hamiltonian framework
for vortex sheets, the skew-mean-curvature flows and the LIA in any dimension) are apparently new.

2 Singular vorticities in codimension 2: point vortices and filaments

2.1 Point vortices in 2D

Let M be the 2-dimensional Euclidean plane R
2. Let the 2D vorticity ξ be supported on N point

vortices: ξ =
∑N

j=1 κj δzj =
∑N

j=1 κj δ(z − zj), where zj = (xj , yj) are coordinates of the jth point

vortex in R
2 = C

1 with the standard area form µ = dx ∧ dy. Kirchhoff’s theorem states that the
evolution of vortices according to the Euler equation is described by the system

κj ẋj =
∂H

∂yj
, κj ẏj = −

∂H

∂xj
, 1 ≤ j ≤ N . (5)

This is a Hamiltonian system in R
2N with the Hamiltonian function

H = −
1

4π

N
∑

j<k

κjκk ln |zj − zk|
2

and the Poisson structure is given by the bracket

{f, g} =

N
∑

j=1

1

κj

(

∂f

∂xj

∂g

∂yj
−
∂f

∂yj

∂g

∂xj

)

. (6)

One can derive the above Hamiltonian dynamics from the 2D Euler equation in the vorticity form
∂tξ = {ψ, ξ} , where ξ is a vorticity function in R

2 and the stream function (or Hamiltonian) ψ of the
flow satisfies ∆ψ = ξ, see e.g. [10]. While the system (5) goes back to Kirchhoff, its properties for
various numbers of point vortices and versions for different manifolds have been of constant interest,
see e.g. [11, 10]. The cases of N = 2 and N = 3 point vortices are integrable, while those of N ≥ 4
are not. The subtle issue of in what sense the equation of N point vortices approximates the 2D Euler
equation as N → ∞ is treated, e.g., in [15].4

The origin of the Poisson bracket (6) is explained by the following

Proposition 2.1. ([14]) The Poisson bracket (6) is defined by the Kirillov-Kostant symplectic structure
on the coadjoint orbit of the (singular) vorticity ξ =

∑N
j=1 κj δ(z − zj) in (the completion of) the dual

of the Lie algebra g = Vectµ(R
2) of divergence free vector fields in R

2.

4The Hamiltonian system for the point vortex approximation of the 2D Euler equation is reminiscent of the Calogero-
Moser system for the evolution of poles of rational solutions of the KdV equation.
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Proof. Indeed, a vector tangent to the coadjoint orbit of such a singular vorticity ν can be regarded
as a collection of vectors {Vj} in R

2 attached at points zj . Then for a pair of tangent vectors the
corresponding Kirillov-Kostant symplectic structure becomes the weighted sum of the corresponding
contributions at each point vortex zj with strengths κj as the corresponding weights:

ωKK
ξ (V,W ) :=

∫

R2

ξ ∧ iV iWµ =
∑

j

κj µ(Vj,Wj) .

The Poisson bracket (6), being the inverse of the symplectic structure, has the reciprocals of the weights
κj .

2.2 Vortex filaments in 3D

By passing from 2D to 3D we move from point vortices to filaments. Vortex filaments are curves in R
3

being supports of singular vorticity fields. They are governed by the Euler equation

∂tξ + Lvξ = 0 , (7)

where v = curl−1ξ and the vorticity field (or a 2-form) ξ has support on a curve γ ⊂ R
3. (Note that the

exactness of the form ξ implies that γ is a boundary of a 2-dimensional domain, i.e., in particular, its
components are either closed or go to infinity.) The Euler dynamics is nonlocal in terms of the vorticity
field, or 2-form, ξ since it requires finding the field v = curl−1ξ.

The localized induction approximation (LIA) of the vorticity motion is a procedure which allows
one to keep only the local terms in the vorticity Euler equation, as we discuss below. In R

3 the
corresponding evolution is described by the vortex filament equation

∂tγ = γ′ × γ′′ , (8)

where γ(·, t) ⊂ R
3 is a time-dependent arc-length parametrized space curve. For an arbitrary parametriza-

tion the filament equation becomes ∂tγ = k · b, where k and b = t× n stand, respectively, for the
curvature value and binormal unit vector of the curve γ at the corresponding point. This equation is
often called the binormal equation. (The equivalence of the two equation forms is straightforward: for
an arc-length parametrization the tangent vectors t = ∂γ/∂θ = γ′ have unit length and the acceleration
vectors are γ′′ = ∂t/∂θ = k · n, i.e. ∂tγ = γ′ × γ′′ becomes ∂tγ = k · b, where the latter equation is
valid for an arbitrary parametrization.)

Remark 2.2. Here we briefly recall the LIA derivation of the equation (8) in 3D, see e.g. [5], and give
more details in Section 4 and Appendix.

Assume that the velocity distribution v in R
3 has vorticity ξ = curl v concentrated on a smooth

embedded arc-length parametrized curve γ ⊂ R
3 of length L. Then

ξ(q, t) = C

∫ L

0
δ(q − γ(θ, t))

∂γ

∂θ
dθ .

Here δ is the delta-function in R
3 and the constant C, the strength of the filament, is the flux of ξ

across (or, which is the same, the circulation of v over) a small contour around the core of the vortex
filament γ. Note that the exactness of the 2-form ξ also implies that the filament strength C is indeed
constant along γ.
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The Biot-Savart law allows one to represent the velocity field in terms of its vorticity:

v(q, t) = −
1

4π

∫

M

(q − q̃)× ξ(q̃)

‖q − q̃‖3
d3x̃ = −

C

4π

∫

γ

q − γ(θ̃, t)

‖q − γ(θ̃, t)‖3
×
∂γ

∂θ̃
dθ̃ . (9)

By utilizing the fact that the time evolution of the curve γ is given by the velocity field v itself:
∂γ
∂t (θ, t) = v(γ(θ, t), t) we come to the following integral:

∂γ

∂t
(θ, t) = −

C

4π

∫

γ

γ(θ, t)− γ(θ̃, t)

‖γ(θ, t)− γ(θ̃, t)‖3
×
∂γ

∂θ̃
dθ̃ .

This integral is divergent with the main singularity coming from the points on the curve γ close to each
other on the curve (i.e. with small |θ̃ − θ|). Given θ the Taylor expansion of γ̃(θ) in (θ̃ − θ) yields

∂γ

∂t
(θ, t) =

C

8π

[

∂γ

∂θ
×
∂2γ

∂θ2

∫ L

0

dθ̃

|θ − θ̃|
+O(1)

]

.

Since the right-hand side is divergent, for a small ǫ we take the truncation of the integral by considering
only the part |θ̃ − θ| > ǫ of the integration domain [0, L]. The corresponding integral is of order ln ǫ.
Rescaling time by means of t → t(C/8π) ln ǫ we are keeping only the singularity term and neglecting
others as ǫ→ 0.

This way we obtain the vortex filament equation (8). It is also called the localized induction
approximation (LIA) since the velocity field ∂γ/∂t of the curve γ is induced by its own vorticity, i.e.
vorticity supported on the curve, while only parts of the curve sufficiently close to a given point γ(θ)
determine the velocity field at that point. (We discuss the above limit in higher dimensions in the next
two sections.) Note that in 2D point vortices interact with each other but not with themselves (as
manifested by the Kirchhoff Hamiltonian), i.e. the localization in 2D would give the zero LIA equation.

Remark 2.3. This binormal equation is known to be Hamiltonian relative to the Marsden-Weinstein
symplectic structure on non-parametrized space curves in R

3. Recall that the Marsden-Weinstein
symplectic structure is defined on oriented curves γ by

ωMW
γ (V,W ) :=

∫

γ

iV iWµ =

∫

γ

µ(V,W, γ′) dθ (10)

where V and W are two vector fields attached to the curve γ and regarded as variations of this curve,
while the volume form µ is evaluated on the three vectors V,W and γ′ = ∂γ/∂θ. One can see that this
integral does not depend on the parameter θ on the curve γ(θ).

Equivalently, this symplectic structure can be defined by means of the operator J of almost complex
structure on curves: any variation, i.e. vector field attached at the oriented curve γ, is rotated by the
operator J in the planes orthogonal to γ by π/2 in the positive direction (which makes a skew-gradient
from a gradient field), see details in [14, 4].

One can show that this is the Kirillov-Kostant symplectic structure on the coadjoint orbit of the
vorticity ξγ supported on the curve γ and understood as a point in a completion of the dual of the
Lie algebra: ξγ ∈ dΩ1(R3) = Vectµ(R

3)∗. The pairing of γ and a divergence-free vector field V can be
defined directly as 〈γ, V 〉 := FluxV |σ, where σ is an oriented surface whose boundary is γ = ∂σ.

Remark 2.4. As discussed above, the Euler equation (7) is Hamiltonian with the Hamiltonian function
given by the kinetic energy. The energy E(v) = 1

2

∫

M (v, v)µ is local in terms of velocity fields, but it
is nonlocal in terms of vorticities: E(ξ) = 1

2

∫

M (curl−1ξ, curl−1ξ)µ. It turns out that after taking the
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localized induction approximation, when we keep only the local terms, the filament equation remains
Hamiltonian with respect to the same Marsden-Weinstein symplectic structure, but with a different
Hamiltonian (see Sections 3, 4 and Appendix).

The corresponding new Hamiltonian functional turns out to be the length functional of the curve:
H(γ) = length(γ) =

∫

γ ‖γ
′(θ)‖ dθ, see e.g. [4]. Indeed, the variational derivative, i.e. the “gradient,”

of this length functional H is δH/δγ = −γ′′ = −t′ = −k · n, where t and n are, respectively, the unit
tangent and normal fields to the curve γ. The dynamics is given by the corresponding skew-gradient,
which is obtained from δH/δγ by applying J for the above symplectic structure. This operator, rotating
the plane orthogonal to t by π/2, sends −k ·n to k ·b. In the next section we discuss how the Marsden-
Weinstein symplectic structure and binormal equation are generalized to higher dimensions.

The LIA evolution is close to the actual Euler evolution of a vortex filament only for a short time
(when the local term in dominant). For large times the LIA filament may, e.g., self-intersect, while the
incompressible Euler dynamics has a frozen-in vorticity and it does not allow topology changes of the
filaments.

3 Vortex membranes and skew-mean-curvature flow

For a smooth hypersurface in the Euclidean space R
n its mean curvature is a function on this surface.

Similarly, one can define a mean curvature vector field for a smooth submanifold of any dimension l.

Definition 3.1. a) Let P be a smooth submanifold of dimension l in the Euclidean space Rn. Its
second fundamental form at a point p ∈ P is a map from the tangent space TpP to the normal space
NpP . The mean curvature vector MC(p) ∈ NpP is the normalized trace of the second fundamental
form at p, i.e. the trace divided by l.

b) Equivalently, the mean curvature vector MC(p) ∈ NpP is the mean value of the curvature vectors
of geodesics in P passing through the point p when we average over the sphere Sl−1 of all possible unit
tangent vectors in TpP for these geodesics.

Now consider a closed oriented embedded submanifold (membrane) P of codimension 2 in R
n

(or more generally, in a Riemannian manifold Mn) with n ≥ 3 and the Marsden-Weinstein (MW)
symplectic structure on such submanifolds. Recall that the Marsden-Weinstein symplectic structure
ωMW on membranes of codimension 2 in R

n (or in any n-dimensional manifold) with a volume form µ
is defined similar to the 3-dimensional case: two variations of a membrane P are regarded as a pair of
normal vector fields attached to the membrane P and the value of the symplectic structure on them is

ωMW
P (V,W ) :=

∫

P

iV iWµ .

Here iV iWµ is an (n−2)-form integrated over P . Note that this symplectic structure can be thought of
as the “total” averaging of the symplectic structures in each normal space NpP to P . (The Marsden-
Weinstein structure in higher dimensions was studied in [4, 9].)

Now we define the Hamiltonian function on those membranes by taking their (n − 2)-volume:
H(P ) = volume(P ) =

∫

P µP , where µP is the volume form of the metric induced from R
n to P . For

instance, for a closed curve γ in R
3 this Hamiltonian is the length functional discussed in Remark

2.4. Note that to define the MW structure one only needs the volume form on R
n, while to define the

Hamiltonian one does need a metric.
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Theorem 3.2. In any dimension n ≥ 3 the Hamiltonian vector field for the Hamiltonian H and the
Marsden-Weinstein symplectic structure on codimension 2 membranes P ⊂ R

n is

vH(p) = Cn · J(MC(p)) ,

where Cn is a constant, J is the operator of positive π/2 rotation in every normal space NpP to P , and
MC(p) is the mean curvature vector to P at the point p.

This statement, as well as the proof below, is valid for any Riemannian manifoldM . The expression
of vH via the trace of the second fundamental form without reference to the mean curvature appeared
in [9], Proposition 3. For 4D this theorem was obtained in [16]. Here and below we use the notation
Cn for some constant depending on the dimension in the case of Rn, or on the geometry of Mn in the
general case, but not on the membrane P . In the theorem above Cn = 4− 2n.

Proof. Since the MW symplectic structure is the averaging of the symplectic structures in all 2-
dimensional normal planes NpP , the skew-gradient (i.e. the Hamiltonian vector) for any functional
on submanifolds P is obtained from its gradient field attached at P by the application of the almost
complex structure J . The latter is the positive rotation by π/2 in each normal plane. (Orientations of
R
n and P determine the orientation of NpP and hence the positive direction of rotation in NpP is well

defined.) Thus to prove vH(p) = const · J(MC(p)) we need to show that the gradient, i.e. the first
variation, of the volume functional H(P ) is

δH

δP
(p) = const ·MC(p) .

On the other hand, the fact that the mean curvature vector field is the gradient for the volume
functional is well-known, see e.g. [7]. A quick argument follows from the observation that for a
variation Pt defined by a normal vector field W attached at P of dimension l the volume changes at
the rate

d

dt
H(Pt) = −2l

∫

P

(W,MC)µP .

The latter equality can be verified for a variation confined to a local chart parametrizing a neighborhood
of a point p ∈ P . Let ∂i be coordinate unit vectors in this chart and φ is the chart parametrization
map. Then the induced metric on P in local coordinates around the point p is gij = (φ∗∂i, φ∗∂j) and
the volume variation is d/dt det(gij). By choosing the coordinates so that gij(p) = δij at t = 0 one has

d/dt det(gij) = tr(d/dt gij) = tr(LW gij) = 2 tr(∇Wφ∗∂i, φ∗∂j) = 2 tr(∇φ∗∂iW,φ∗∂j) .

Then using integration by parts one has

d

dt
H(Pt) = 2

∫

P

tr(∇φ∗∂iW,φ∗∂j)µP = −2

∫

P

tr(W,∇φ∗∂iφ∗∂j)µP = −2l

∫

P

(W,MC)µP ,

since MC := tr(∇φ∗∂iφ∗∂j)/l. By applying this to P of dimension n− 2 one obtains Cn = −2(n− 2) =
4− 2n.

The mean curvature flow is often used to construct minimal surfaces in R
3. For hypersurfaces it is

directed along the normal, its value is given by the mean curvature, and it minimizes the hypersurface
volume in the fastest way.

Definition 3.3. The higher vortex filament equation on submanifolds of codimension 2 in R
n is given

by the skew-mean-curvature flow:
∂tP (p) = −J(MC(p)) . (11)

10



Note that the skew-mean-curvature flow introduced this way differs by the π/2-rotation from the
mean-curvature one. Respectively, it does not stretch the submanifold while moving its points orthog-
onally to the mean curvatures. In particular, the volume of the submanifold P is preserved under this
evolution, as it should, being the Hamiltonian function of the corresponding dynamics.

Remark 3.4. For dimension n = 3 the mean curvature vector is the curvature vector k ·n of a curve γ:
MC = k·n, while the skew-mean-curvature flow becomes the binormal equation: ∂tγ = −J(k·n) = k·b,
which for arc-length parametrization is given by the equation ∂tγ = γ′ × γ′′. Unlike the case n = 3, for
larger n ≥ 4 the skew-mean-curvature flow is apparently non-integrable.

Problem 3.5. a) Is there an analogue of the Hasimoto transformation for any n relating the higher vor-
tex filament equation with the higher-dimensional (and already non-integrable) nonlinear Schrödinger
equation (NLS)?

b) Is there an analogue for any n of the gas dynamics equation equivalent to the vortex filament
one in 3D, see [4].

c) Are there integrable approximations of the higher filament equation (11).

For n = 4 the question a) was posed in [16]. Recall that for n = 3 at any time t the Hasimoto
transformation sends a curve γ(θ) with curvature k(θ) and torsion τ(θ) to the wave function ψ(θ) =

k(θ) exp{i
∫ θ
τ(ζ) dζ} satisfying the 1-dimensional NLS: i∂tψ + ψ′′ + 1

2 |ψ|
2ψ = 0.

4 The localized induction approximation (LIA) in higher dimensions

Let Pn−2 ⊂ R
n, n ≥ 3 be a closed oriented submanifold of codimension 2. Consider the vorticity 2-form

ξP supported on this submanifold: ξP = C ·δP . We will call P a higher(-dimensional) vortex filament or
membrane. Note that the exactness (or closedness) of the 2-form ξP implies that the membrane strength
C is constant, while the integrals of ξP over 2-dimensional surfaces with boundary not intersecting P
are well-defined and depend only on the homology class of the boundary in the complement to P .

We would like to find the divergence-free vector field v which has a prescribed vorticity 2-form ξ, i.e.
ξ = dv♭ ∈ Ω2(Rn). In dimension 3, where vorticity can be regarded as a vector field, the corresponding
vector potential v in R

3 is reconstructed by means of the Biot-Savart formula (9). Now we are looking
for its analogue in any dimension n ≥ 3. The statements we are discussing in this section were obtained
for n = 4 in [16]. The extentions of proofs to the general case are presented in Appendix.

The singular δ-type vorticity 2-form ξP is completely defined by the submanifold P . Denote by
G(q, p) the Green function of the Laplace operator in R

n, i.e. given a point q ∈ R
n one has ∆pG(q, p) =

δq(p), the delta-function supported at q.

Theorem 4.1. For any dimension n ≥ 3 the divergence-free vector field v in R
n satisfying curl v = ξP

is given by the following generalized Biot-Savart formula: for any point q 6∈ P one has

v(q) := Cn ·

∫

P

J (ProjN∇pG(q, p)) µP (p) ,

where ProjN∇pG(·, p) is the orthogonal projection of the gradient ∇pG(·, p) of the Green function G(·, p)
to the fiber NpP of the normal bundle to P at p ∈ P , the operator J is the positive rotation around p
by π/2 in this 2-dimensional space NpP , and µP is the induced Riemannian (n − 2)-volume form on
the submanifold P ⊂ R

n.
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In other words,

v(q) := Cn ·

∫

P

sgradp
(

G(q, p)|NpP

)

µP (p) ,

by using the symplectic structure in NpP . Here G(q, p)|NpP is the restriction of the function G(q, p)
to the normal plane NpP . These formulas use the affine structure of Rn, since in the integral averages
vectors over P and attaches the total at the point q. In the case of an arbitrary manifold Mn the
Biot-Savart formula is more complicated, and we will use a round-about way to obtain the LIA for any
Mn, see Remark 4.5 below.

Note that as the point q approaches the membrane P the vector field v(q) may go to infinity.
Consider the following truncation of the integral above. For q ∈ P and given ǫ > 0 take the integral
over P for all points p satisfying ‖q − p‖ ≥ ǫ, i.e. at the distance at least ǫ from q:

vǫ(q) := Cn ·

∫

p∈P, ‖q−p‖≥ǫ

J (ProjN∇pG(q, p)) µP (p) .

Theorem 4.2. (cf. [16] for 4D) For any dimension n ≥ 3 the velocity field v defined in Theorem 4.1
has the following asymptotic of the truncation vǫ: for q ∈ P ⊂ R

n one has

lim
ǫ→0

vǫ(q)

ln ǫ
= Cn · J (MC(q)) .

By reparametrizing the time variable t → −(Cn · ln ǫ)t to absorb the logarithmic singularity we
come to the following LIA equation for a higher filament P ⊂ R

n.

Corollary 4.3. The LIA approximation for a vortex membrane (or higher filament) P in R
n coincides

with the skew-mean-curvature flow:

∂tP (q) = −J (MC(q)) ,

where MC(q) is the mean curvature vector at q ∈ P . In particular, the LIA equation is Hamiltonian
with respect to the Marsden-Weinstein symplectic structure and Hamiltonian function given by the
volume of the membrane P .

Consider now the energy Hamiltonian E(v) = 1
2

∫

M (v, v)µ forM = R
n and fast decaying divergence-

free velocity vector fields v. As before, let ξ be the vorticity 2-form of the field v, i.e. ξ = dv♭. If
the vorticity ξP is supported on a membrane P ⊂ R

n of codimension 2, the corresponding energy
E(v) = 1

2

∫

Rn(v, v)µ for the velocity v defined by curl v = ξP is divergent and requires a regularization.
Consider the regularized energy

Eǫ(v) :=
1

2

∫

Rn

(v, vǫ)µ .

Theorem 4.4. (cf. [16] for 4D) For any dimension n ≥ 3 the regularized energy Eǫ(v) for the velocity
of a membrane P ⊂ R

n has the following asymptotics:

lim
ǫ→0

Eǫ(v)

ln ǫ
= Cn ·

∫

P

µP = Cn · volume (P ) .

We refer to Appendix and [16] for details on the proofs for R
n. As we discuss in Appendix, this

regularization is also valid for any Riemannian manifold M .
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Remark 4.5. When one passes from smooth to singular vorticities supported on membranes of codi-
mension 2 the Euler dynamics requires regularization. Correspondingly, so does the associated energy
Hamiltonian. On the other hand, the corresponding symplectic structure on smooth vorticities natu-
rally descends to the MW symplectic structure on submanifolds (this is how it was defined in [14]) and
does not need a regularization.

This consistency explains why the hydrodynamical Euler equation remains Hamiltonian under the
localized induction approximation. Indeed, the LIA takes the Hamiltonian Euler equation into the
Hamiltonian skew-mean-curvature equation by “keeping only the logarithmic divergences” given by the
local terms.

For any manifoldM the above consistency can be taken as the definition of the regularized dynamics,
defined in Theorem 4.2 and Corollary 4.3. Namely, one can employ only the MW symplectic structure
and regularization of the Hamiltonian, which uses only local properties of the Green function that hold
for any M , in order to find the vortex dynamics in the general case.

5 Singular vorticities in codimension 1: vortex sheets

5.1 Vortex sheets as exact 2-forms

Now we return to an arbitrary manifold M (with H1(M) = 0), but consider singular vorticities sup-
ported in codimension 1. Introduce the following

Definition 5.1. Vortex sheets are singular exact 2-forms, i.e. 2-currents of type ξ = α ∧ δΓ, where
Γn−1 ⊂ Mn is a closed oriented hypersurface in M , δΓ is the corresponding Dirac 1-current supported
on Γ, and α is a closed 1-form on Γ.

For a singular 2-form ξ = α ∧ δΓ to be exact either
i) the closed 1-form α must be exact on Γ, i.e. α = df for a function f on Γ, or
ii) the hypersurface Γ must be a boundary of some domain ∂−1Γ ⊂M and the closed 1-form α has

to admit an extension to a closed 1-form ᾱ on ∂−1Γ. (For instance, Γ is a torus in R
3 while α = dθ

with θ being one of the generating angles of the torus.) Note that under the assumption H1(M) = 0 a
closed hypersurface Γ is always a boundary.

The above options come from the interpretation of ξ = α ∧ δΓ: one can choose either α or δΓ to be
exact, while the other form closed, for the wedge product to be exact.

For an exact form α = df the vortex sheet is fibered by levels of the function f . If α is a closed
1-form, it is a function differential only locally, and the integral submanifolds of ker α foliate Γ. Thus
the vortex sheets are fibered into filaments (of codimension 1 in Γ) in the former case and foliated in
the latter.

Example 5.2. If α is supported on a single hypersurface γ in Γ (i.e. on a curve γ ⊂ Γ for n = 3), then
the vortex sheet ξ = α ∧ δΓ = δγ reduces to the vorticity of the filament γ ⊂ Γ.

Remark 5.3. The corresponding primitive 1-forms η satisfying ξ = dη for the singular vorticity 2-form
ξ = α ∧ δΓ are as follows.

i) For an exact α = df take η = fδΓ.
ii) For a closed 1-form α extendable to a closed 1-form ᾱ on a domain ∂−1Γ take as a primitive

η = d−1ξ the 1-form η = −χ∂−1Γ · ᾱ, where ∂
−1Γ is a domain bounded by the hypersurface Γ and χ∂−1Γ

is its characteristic function. Indeed,

dη = −d(χ∂−1Γ · ᾱ) = −dχ∂−1Γ ∧ ᾱ = −δΓ ∧ ᾱ = α ∧ δΓ = ξ .
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Note that the 1-form ᾱ and the domain ∂−1Γ are not defined uniquely, and this ambiguity corre-
sponds to the ambiguity in the definition of a primitive 1-form η = d−1ξ.

Vortex sheets ξ understood as singular currents can be regarded as elements of a completion of the
dual space Vectµ(M)∗. (It is convenient to change the order in this wedge product to ξ = δΓ∧α in order
to avoid the signs depending on the dimension of M in the pairing and symplectic structure below.)

Definition–Proposition 5.4. The pairing of vortex sheets (i.e. singular vorticity currents) ξ = δΓ∧α
with vector fields V ∈ Vectµ(M) is defined by (cf. the pairing (3))

〈d−1(δΓ ∧ α), V 〉 =

∫

M

iV d
−1(δΓ ∧ α) · µ ,

where d−1(δΓ ∧ α) is a primitive 1-form for the vorticity ξ = δΓ ∧ α. The pairing is well defined, i.e. it
does not depend on the choice of d−1.

Proof. Indeed,

〈d−1(δΓ ∧ α), V 〉 =

∫

M

d−1(δΓ ∧ α) ∧ iV µ =

∫

M

δΓ ∧ α ∧ d−1(iV µ) =

∫

Γ
α ∧ d−1(iV µ) .

Since H1(M) = 0 the closed (n − 1)-form iV µ is exact, and its primitives d−1(iV µ) may differ by an
exact (n− 2)-form ζ. Then the form α∧ ζ is exact on Γ and the corresponding pairing difference given
by the integral over Γ is zero.

For instance, for an exact α = df the pairing reduces to 〈d−1(δΓ ∧ df), V 〉 = Flux (fV )|Γ.

Remark 5.5. Suppose that Γ is the oriented boundary between two different parts Mj with velocity
fields v1, v2 that are divergence-free and vorticity-free (i.e. locally potential flows). The vorticity is
infinite at the interface Γ and here we describe how to define the 1-form α in the corresponding vortex
sheet ξ = α ∧ δΓ.

Given a Riemannian metric on M , we prepare the 1-form v♭j on Mj corresponding to the velocity

vj, respectively. Note that the forms v♭j must be locally exact, v♭j = dhj since curl vj = 0 on Mj .
Then locally α := (dh1 − dh2)|Γ = df1 − df2. One can also define this 1-form α = d(f1 − f2) by
means of the vector field vΓ inside this vortex sheet Γ by using the metric restricted to Γ: locally
vΓ := (d(f1−f2))

♯ = Proj|Γ(v1−v2). The proper sign of vΓ or the form α depends on the orientation of
Γ: the latter defines the orientation of the corresponding exterior normal and hence signs of the fields
v1 and v2 in this difference.

5.2 Definition and properties of the symplectic structure on vortex sheets

There is a natural symplectic structure on vortex sheets coming from the Lie-Poisson structure on
Vectµ(M)∗. It extends the Marsden-Weinstein symplectic structure for filaments in R

3 and for mem-
branes of codimension 2 in Mn. The corresponding symplectic leaves are defined by isovorticed fields,
i.e. fields with diffeomorphic singular vorticities α ∧ δΓ. The corresponding symplectic structure on
spaces of diffeomorphic vortex sheets is defined as follows.
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Definition 5.6. Given two vector fields V,W attached at Γ define the symplectic structure on variations
of vortex sheets ξ = δΓ ∧ α, i.e. pairs (Γ, α), by

ωδΓ∧α(V,W ) :=

∫

Γ
α ∧ iV iWµ .

Theorem 5.7. The form ωδΓ∧α coincides with the Kirillov-Kostant symplectic structure ωKK
ξ on the

coadjoint orbit containing the vortex sheet ξ in Vect∗µ(M).

Proof. Adapt the formula (4) for Kirillov-Kostant symplectic structure on the coadjoint orbit of ξ to
the case of a vortex sheet ξ = δΓ ∧ α. Let V and W be two variations of ξ given by divergence-free
vector fields on M . Then by using the identity i[V,W ]µ = d(iV iWµ) valid for divergence-free fields and
specifying to the case of ξ = δΓ ∧ α one obtains

ωKK
ξ (V,W ) :=

∫

M

d−1ξ ∧ i[V,W ]µ =

∫

M

d−1ξ ∧ d(iV iWµ) =

∫

M

ξ ∧ iV iWµ

=

∫

M

δΓ ∧ α ∧ iV iWµ =

∫

Γ
α ∧ iV iWµ = ωδΓ∧α(V,W ) .

Remark 5.8. If α is supported on a curve γ ⊂ Γ, i.e. ξ = δγ , then ωξ(V,W ) :=
∫

γ iV iWµ. For

a curve γ ⊂ R
3 this is exactly the Marsden-Weinsten symplectic structure ωMW

γ on filaments, i.e.
non-parametrized curves in R

3, see (10).

The evolution of vortex sheets ξ = α ∧ δΓ is defined by the classical Euler equation in the vorticity
form ∂tξ + Lvξ = 0, where ξ = curl v = dv♭. This equation is Hamiltonian with respect to the above
symplectic structure ωKK

ξ . The standard energy Hamiltonian E(v) = 1
2

∫

M (v, v)µ defines a non-local
evolution of the vortex sheet, similarly to the case of membranes.

Let (f, θ) be coordinates on a vortex sheet α ∧ δΓ in R
3 where the exact 1-form α = df and the

surface Γ is fibered into the filaments Γf being levels of the function f . The rough LIA procedure
similar to the one described in Section 2 under the cut-off assumption ǫ < |θ − θ̃| ≤ |f − f̃ |2 leads
to the binormal type equation: ∂tΓ = Γθ × Γθθ , which is Hamiltonian with the Hamiltonian function
H(Γ) :=

∫

length(Γf ) df . The latter may be understood as a continuous family of binormal equations.
One may hope that other assumptions on the cut-off procedure lead to more interesting approximations.

Problem 5.9. Describe possible analogues of localized induction approximations (LIAs) and the length
Hamiltonian for vortex sheets.

The Euler evolution of vortex sheets is described in the closed form by the Birkhoff-Rott equation,
see e.g. [12]. The motion of vortex sheets is known to be subject to instabilities of Kelvin-Helmholtz
type which lead to roll-up phenomena. It would be interesting to obtain this instability within the
Hamiltonian framework for vortex sheets described above, cf. [13].

6 Appendix: Derivation of the LIA in higher dimensions

In this Appendix we outline, following [16] and extending it to any dimension, the generalized Biot-
Savart formula and regularized energy for the vector fields whose vorticity is confined to membranes,
i.e. submanifolds of codimension 2.
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6.1 Generalized and localized Biot-Savart formulas

Let v be a vector field in the Euclidean space R
n, n ≥ 3. Assume this field to be divergence free:

div v = 0 or, equivalently, d∗v♭ = 0 for the 1-form v♭ on R
n. Its vorticity is the 2-form ξ = dv♭. We are

looking for a generalized Biot-Savart formula which would allow one to reconstruct the velocity field v
for a given vorticity 2-form ξ, and in particular, for a given singular vorticity ξP = δP supported on a
compact membrane P .

Consider d∗ξ = d∗dv♭ = ∆v♭ = (∆v)♭. Then component-wise one has the Poisson equation on v:
∆vi = ∗(dxi ∧ ∗d∗ξ).

Let G(·, p) be the Green function for the Laplace operator in R
n ∋ p. Then at any q ∈ R

n the
components of the field-potential are

vi(q) =

∫

Rn

G(q, p) ∧ ∗(dxi ∧ ∗d∗ξ)(p)µ(p) = −

∫

Rn

(∂i, (∗(dpG(q, p) ∧ ∗ξ))♯)µ(p) ,

where ∂i are the coordinate unit vectors in R
n. The vector field-potential v itself is

v(q) = −

∫

Rn

(∗(dpG(q, p) ∧ ∗ξ))♯ µ(p) , (12)

which is the generalized Biot-Savart formula in the case of smooth vorticity ξ.

Theorem 6.1. (= 4.1′) For any dimension n the divergence-free vector field v satisfying curl v = ξP
(i.e. dv♭ = ξP ) is given by the following localized Biot-Savart formula: for any point q 6∈ P one has

v(q) :=

∫

P

sgradp
(

G(q, p)|NpP

)

µP (p) , (13)

where G(q, p)|NpP is the restriction of the function G(q, p) to the normal plane NpP ⊂ R
n.

Proof. In order to set ξ to be ξP = δP we think of the latter in terms of local coordinates. Let
t1, ..., tn−2 be local coordinates along P , while ν1, ν2 are coordinates normal to P near p ∈ P . Then
locally ξP (q) = Cδp(q) dν1∧dν2 where δp(q) is a delta-function supported at p ∈ P , i.e. ξP is the δ-type
2-form in the transversal to P direction, and one has ∗ξP = µP .

Then for q ∈ R
n and p ∈ P one has

v(q) = −

∫

Rn

δp(q)(∗(dpG(q, p) ∧ µP ))
♯ µ(p)

= −

∫

Rn

δp(q)

(

∂pG(q, p)

∂ν1
dν2 −

∂pG(q, p)

∂ν2
dν1

)♯

µ(p)

= −

∫

P

(

∂pG(q, p)

∂ν1
dν2 −

∂pG(q, p)

∂ν2
dν1

)♯

µP (p) =

∫

P

sgradp(G(q, p)|NpP )µP (p) ,

where the last equality is due to the following (all derivatives of G(q, p) are in p, so we skip the index):

(

−
∂G

∂ν1
dν2 +

∂G

∂ν2
dν1

)♯

= −
∂G

∂ν1
∂ν2 +

∂G

∂ν2
∂ν1 =: sgradp(G|NpP ) = J (ProjN∇pG)
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Remark 6.2. For q 6∈ P the integrand expression above is smooth, since so is G(q, p) as a function
of p ∈ P . For q ∈ P the integral (13) is well defined provided that the integration over P is replaced
by that over Pǫ = {p ∈ P | ‖p − q‖ ≥ ǫ}. As p → q ∈ P the Green function has a singularity
G(q, p) = Cn‖r‖

2−n where r := p − q ∈ R
n. Hence ∇pG = Cn r/‖r‖

n, and therefore the integral is
divergent. (Recall that Cn stands for any constant depending on n.) This divergence is “local” in the
sense that the contributions from p ∈ P close to q ∈ P make the velocity v(q) divergent, and this local
contribution into v(q) is exactly what the LIA takes into account.

6.2 Regularization of velocity

Given ǫ > 0 consider a geodesic ball Uǫ in the membrane P of radius ǫ around a point q ∈ P . Define
now a truncation vǫ(q) by integrating in (13) over Pǫ := P \ Uǫ instead of over P :

vǫ(q) :=

∫

Pǫ

sgradp
(

G(q, p)|NpP

)

µp .

Theorem 6.3. (= 4.2′) For any dimension n the approximation vǫ(q) has the following asymptotics:
at any point q ∈ P one has

lim
ǫ→0

vǫ(q)

ln ǫ
= Cn · J (MC(q)) ,

where MC(q) is the mean curvature vector of the membrane P at q and the constant Cn depends on n
only.

Proof. In order to find the asymptotics of how vǫ(q) → ∞ as ǫ → 0 we localize vǫ, i.e. confine the
integration to a punctured neighborhood Uǫ,a = {p ∈ Pǫ | ǫ < ‖p − q‖ < a} ⊂ Pǫ, since the integral
outside of it, over Pa = Pǫ \ Uǫ,a is finite.

Set the origin of Rn at q, denote the radius vector from q to p by r = p − q ∈ R
n. Introduce

the geodesic radial coordinate ρ and spherical multi-coordinate Θ in the ball Ua of radius a inside the
membrane P . Note that for the volume form on P of dimension n− 2 one has µP = ρn−3 dρ dΘ.

Then for a point p ∈ Uǫ,a one has G(q, p) = Cn/‖r‖
n−2 ∼ Cn/ρ

n−2 for the Green function, where ∼
stands for the leading term in the corresponding expansion. Hence, ∇pG(q, p) ∼ Cn r/ρ

n. Denote by
ν1, ν2 normal coordinates to the codimension 2 membrane P near q. We have

vǫ(q) ∼

∫

Uǫ,a

J (ProjN (∇pG(q, p))) µP (p) = Cn

∫

Sn−3

∫ a

ǫ

J
(r, ∂ν1)∂ν1 + (r, ∂ν2)∂ν2

ρn
ρn−3 dρ dΘ .

Now we fix Θ (temporarily suppressing this notation) and denote by t(ρ) = ∂r/∂ρ the tangent vector
to the geodesic in direction Θ: expand the following quantities in ρ near ρ = 0 in the punctured
neighborhood Uǫ,a as follows:

∂νi(ρ) = ∂νi(0) + ρ
∂νi
∂ρ

(0) +O(ρ2) ;

r(ρ) = ρ
∂r

∂ρ
(0) +

ρ2

2

∂2r

∂ρ2
(0) +O(ρ3) = ρ t(0) +

ρ2

2

∂t

∂ρ
(0) +O(ρ3) .

Then for a given Θ using (t,
∂νi
∂ρ ) = −( ∂t∂ρ , ∂νi), which is implied by (t, ∂νi)(ρ) = 0 for any ρ, one obtains

the following expansion of (r, ∂ν1)∂ν1 + (r, ∂ν2)∂ν2 in ρ:

ρ2
[((

t,
∂ν1
∂ρ

)

∂ν1 +
1

2

(

∂t

∂ρ
, ∂ν1

)

∂ν1

)

+

((

t,
∂ν2
∂ρ

)

∂ν2 +
1

2

(

∂t

∂ρ
, ∂ν2

)

∂ν2

)]

(0) +O(ρ3)
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= −
ρ2

2

[(

∂t

∂ρ
, ∂ν1

)

∂ν1 +

(

∂t

∂ρ
, ∂ν2

)

∂ν2

]

(0) +O(ρ3) = −
ρ2

2
curvt(0) +O(ρ3) .

Here curvt(0) is the vector of the geodesic curvature for the direction t at ρ = 0 and fixed Θ, i.e. at
the point 0 ∈ R

n, which stands for q. Restoring the dependence on Θ we have

vǫ(q) ∼ Cn

∫

Sn−3

∫ a

ǫ

J
ρ2 curvt(0,Θ)

ρn
ρn−3 dρ dΘ

= Cn

∫ a

ǫ

dρ

ρ
· J

∫

Sn−3

curvt(0,Θ) dΘ ∼ Cn · ln ǫ · J(MC(q))

by Definition 3.1b) of the mean curvature vector.

6.3 Regularization of energy

Obtain now a regularized expression for the corresponding energy of the velocity field v. Recall that
the kinetic energy of a fluid moving with velocity v in a manifold M with a Riemannian volume form
µ is E(v) = 1

2

∫

M (v, v)µ = 1
2

∫

M v♭ ∧ ∗v♭.
Let ξP be the vorticity 2-form supported on a membrane P ⊂ R

n of codimension 2. As we will
see below, the corresponding energy E(v) = 1

2

∫

M (v, v)µ for the velocity v satisfying curl v = ξP is
divergent. Following [16] define the regularized energy

Eǫ(v) =
1

2

∫

Rn

(v, vǫ)µ .

Theorem 6.4. (= 4.4′) For any dimension n the regularized energy Eǫ(v) has the following asymp-
totics:

lim
ǫ→0

Eǫ(v)

ln ǫ
= Cn ·

∫

P

µP = Cn · volume (P ) .

Proof. First for any vector field v we rewrite the energy E(v) via vorticity by introducing the form-
potential:

E(v) =
1

2

∫

M

v♭ ∧ ∗d∗β =
1

2

∫

M

ξ ∧ ∗β

for the closed 2-form β satisfying d∗β = v♭ or, equivalently, ∆β = dd∗β = dv♭ = ξ. Given the vorticity
2-form ξ, the Poisson equation ∆β = ξ on the 2-forms is equivalent to Poisson equations for their
respective components: ∆βij = ξij. Then β can be reconstructed component-wise by using the Green
function: βij(q) =

∫

Rn G(q, p) ξij(p)µ(p).

For ξ = ξP and ∆β = ξP = C · δP , one has βν1ν2(q) = C
∫

P G(q, p)µP (p) for the normal to P
component of the potential β, while other components are zero. Here µP is the volume form induced
from R

n to P .
By plugging this to the formula E(v) = 1

2

∫

M ξ ∧ ∗β and using ∗ξP = C · µP we obtain

E(v) =
C

2

∫

P

βν1ν2 µP =
C2

2

∫

q∈P

∫

p∈P
G(q, p)µP (p)µP (q) .

The latter is a divergent integral, which can be regularized by considering
Eǫ(v) = 1

2

∫

Rn(v, vǫ)µ. Namely, given a point q ∈ P replace the inner integral over P by the one
over Pǫ = {p ∈ P | ‖q − p‖ ≥ ǫ} by removing from P the ǫ-neighborhood of q. Then one has

Eǫ(v) =
C2

2

∫

q∈P

∫

p∈Pǫ

G(q, p)µP (p)µP (q) .
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As ǫ→ 0 the inner integral
∫

p∈Pǫ
G(q, p)µP (p) increases as Cn · ln ǫ, where the constant Cn depends on

dimension n only. Indeed, as p→ q one has G(q, p) = Cn ‖q− p‖
2−n ∼ Cn ρ

2−n, where ρ is the geodesic
distance from p to q in the membrane P . Then the integration of G(q, p) in the spherical coordinates
over a small (n − 2)-dimensional punctured neighborhood Uǫ,a of radius a around the point q ∈ P in
the membrane P gives the integral

∫

p∈Uǫ,a

G(q, p)µP (p) ∼ Cn

∫ a

ǫ

ρ2−nρn−3 dρ = Cn

∫ a

ǫ

ρ−1 dρ = −Cn ln ǫ+O(1)

as ǫ → 0. Then after the second integration over q ∈ P the regularized energy Eǫ(v) has the following
asymptotics:

Eǫ(v) = Cn ·

∫

q∈P
(ln ǫ)µP (q) +O(1) = Cn · ln ǫ · volume(P ) +O(1) as ǫ→ 0 ,

which completes the proof.

Remark 6.5. One can see from the proof that the logarithmic singularity of the energy Eǫ(v) comes
from close points in P . To find the asymptotics one specifies a small parameter a giving the “range of
interaction” and send ǫ → 0, while other pairs of points do not contribute to the leading term in the
expansion of Eǫ(v). This explains the term “localized induction approximation” (LIA).

Renormalize time and regard H(P ) := volume(P ) as the new energy associated with fluid motions
whose vorticity is supported on the membrane P . As we discussed above, this leads to the Hamiltonian
dynamics of the membrane given by the skew-mean-curvature flow in any dimension.

Note that in the regularization above one essentially uses only the symmetry and the order of
singularity of the Green function G(q, p) as ‖q − p‖ → 0. The same asymptotics of the Green function
holds for an arbitrary manifold Mn and so does the energy regularization which results in H(P ) =
volume(P ).
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