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In 1966 V. Arnold suggested a group-theoretic approach 
to ideal hydrodynamics in which the motion of an inviscid 
incompressible fluid is described as the geodesic flow of the 
right-invariant L2-metric on the group of volume-preserving 
diffeomorphisms of the flow domain. Here we propose geodesic, 
group-theoretic, and Hamiltonian frameworks to include fluid 
flows with vortex sheets. It turns out that the corresponding 
dynamics is related to a certain groupoid of pairs of volume-
preserving diffeomorphisms with common interface. We also 
develop a general framework for Euler–Arnold equations for 
geodesics on groupoids equipped with one-sided invariant 
metrics.
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1. Introduction

Vortex sheets are hypersurfaces of discontinuity in fluid velocity with different speed 
of fluid layers on different sides of the hypersurface. They naturally appear, e.g., in the 
flow past an airplane wing [6]. In this paper we develop geodesic, group-theoretic, and 
Hamiltonian frameworks for their description.

In 1966 V. Arnold proved that the Euler equation for an ideal fluid describes the 
geodesic flow of a right-invariant metric on the group of volume-preserving diffeomor-
phisms of the flow domain [1]. This insight turned out to be indispensable for the study 
of Hamiltonian properties and conservation laws in hydrodynamics, fluid instabilities, 
topological properties of flows, as well as a powerful tool for obtaining sharper existence 
and uniqueness results for Euler-type equations [2]. However, the scope of applicability 
of Arnold’s approach is limited to systems whose symmetries form a Lie group. At the 
same time, there are many problems in fluid dynamics, such as free boundary problems 
or (discontinuous) fluid flows with vortex sheets, whose symmetries should instead be re-
garded as a groupoid: e.g., only those of the maps corresponding to fluid configurations 
with moving boundary admit composition, for which the image of one map coincides 
with the source of the other.

In this paper we propose a strategy to extend Arnold’s framework to Lie groupoids and 
develop a groupoid-theoretic description for incompressible fluid flows with vortex sheets, 
i.e., flows whose velocity field has a jump discontinuity along a hypersurface. It turns out 
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that the corresponding configuration space has a natural groupoid structure. By using 
this vortex sheet groupoid instead of the diffeomorphisms group in Arnold’s description 
and describing the corresponding algebroid, we obtain a geometric interpretation for 
discontinuous fluid flows. We prove that vortex sheet type solutions of the Euler equation 
are precisely the geodesics of an L2-type right-invariant metric on the Lie groupoid of 
discontinuous volume-preserving diffeomorphisms.

1.1. Groupoid framework for vortex sheets

Recall that the hydrodynamical Euler equation for an ideal incompressible fluid filling 
a Riemannian manifold M (possibly, with boundary ∂M) is the following evolution law 
of the velocity field u:

∂tu + ∇uu = −∇p , (1)

supplemented by the divergence-free condition div u = 0 on M and tangency to the 
boundary, u ‖ ∂M . Arnold’s theorem sheds light on the origin of this equation:

Theorem 1.1. [1] The Euler equation can be regarded as an equation of the geodesic flow 
on the group SDiff(M) of volume-preserving diffeomorphisms of M with respect to the 
right-invariant metric given at the identity of the group by the squared L2-norm of the 
fluid’s velocity field (i.e., the fluid kinetic energy1).

This setting assumes sufficient smoothness of the initial velocity field u. In particular, 
it does not, generally speaking, describe flows with vortex sheets, i.e. with jump discon-
tinuities in the velocity. On the other hand, it was recently discovered by F. Otto and 
C. Loeschcke [16] that the motion of vortex sheets is also governed by a geodesic flow, 
but of somewhat different origin. Consider the space VS(M) of vortex sheets (of a given 
topological type) in M , i.e. the space of hypersurfaces which bound fixed volume in M . 
Define the following (weak) metric on the space VS(M). A tangent vector to a point Γ
in the space of all vortex sheets VS(M) can be regarded as a vector field v attached at 
the vortex sheet Γ ⊂ M and normal to it. Then its square length is set to be

〈v, v〉VS := inf {〈u, u〉L2 | div u = 0 and (u, ν) ν = v on Γ} (2)

where 〈u, u〉L2 :=
∫
M

(u, u) μ is the squared L2-norm of a vector field u on M , and ν
is the unit normal field to Γ (see Definition 3.6 below). Then the fluid flow with such 
vortex sheets satisfies the following variational principle:

1 The L2-metric is twice the kinetic energy of the fluid, which leads to a simple time rescaling, and we 
will not be mentioning this throughout the paper.
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Fig. 1. Elements of the groupoid DSDiff(M) and their composition rule.

Theorem 1.2. [16] Geodesics with respect to the metric 〈 , 〉VS on the space VS(M) describe 
the motion of vortex sheets in an incompressible flow which is globally potential outside 
of the vortex sheet.

To unify these two geodesic approaches, as well as to develop Arnold’s approach to 
cover velocity fields with discontinuities, we introduce the Lie groupoid DSDiff(M) of 
volume-preserving diffeomorphisms of a manifold M that are discontinuous along a hy-
persurface. Namely, the elements of DSDiff(M) are quadruples (Γ1, Γ2, φ+, φ−), where 
Γ1, Γ2 ∈ VS(M) are hypersurfaces (vortex sheets) in M confining the same total vol-
ume, while φ± : D±

Γ1
→ D±

Γ2
are volume preserving diffeomorphisms between connected 

components of M \ Γi denoted by D+
Γi
, D−

Γi
. The multiplication of the quadruples in 

DSDiff(M) is given by the natural composition of discontinuous diffeomorphisms and is 
shown in Fig. 1.

The infinitesimal object corresponding to this Lie groupoid is the Lie algebroid 
DSVect(M) → VS(M), which is the space of “possible velocities” of the fluid with a 
vortex sheet. Given a vortex sheet Γ, the corresponding velocities are (discontinuous) 
vector fields on M of the form u = χ+

Γu
+ + χ−

Γ u
−, where χ+

Γ , χ
−
Γ are the indicator func-

tions of the connected components D±
Γ of M \ Γ, and u± are smooth divergence-free 

vector fields on D±
Γ such that the restrictions of u+ and u− to Γ have the same normal 

component, see Section 6. The map from such vector fields u to their normal components 
on Γ is the so-called anchor map # of the corresponding algebroid. Note that such vector 
fields discontinuous along Γ do not have a Lie algebra structure, as the Lie bracket of two 
such fields will not, in general, be a field with matching normal components on Γ. There 
is, however, a Lie bracket on sections of those fields (explicitly given in Section 6.2).

We describe below how to define a right-invariant L2-metric on this groupoid and con-
struct an analog of the geodesic Euler–Arnold equation. Recall that the Euler equation 
in a manifold M for a fluid flow discontinuous along a vortex sheet Γ ⊂ M has the form:

⎧⎪⎪⎨⎪⎪⎩
∂tu

+ + ∇u+u+ = −∇p+,

∂tu
− + ∇u−u− = −∇p−,

∂tΓ = #u ,

(3)

where u = χ+
Γu

+ + χ−
Γ u

− is the fluid velocity, div u± = 0, and p± ∈ C∞(D±
Γ ) are 

functions satisfying the continuity condition p+|Γ = p−|Γ. These equations naturally 
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arise from the weak form of the Euler equation, see Appendix B. The first main result 
of the paper is the following

Theorem 1.3. (=Theorem 7.4) The Euler equation (3) for a fluid flow with a vortex 
sheet Γ ⊂ M is the groupoid Euler–Arnold equation corresponding to the L2-metric on 
the algebroid DSVect(M). Equivalently, the Euler equation (3) is a geodesic equation 
for the right-invariant L2-metric on (source fibers of) the Lie groupoid DSDiff(M) of 
discontinuous volume-preserving diffeomorphisms.

Remark 1.4. One can see that the standard hydrodynamical Euler equation is a partic-
ular case of the above equations with a vortex sheet (where Γ is empty). In this case 
the space VS(M) of vortex sheets consists of one point, while the groupoid DSDiff(M)
of diffeomorphism pairs becomes the group SDiff(M) of volume-preserving diffeomor-
phisms.

We note that the geodesics on the groupoid turn out to be weak solutions of the Euler 
equation with vortex sheet initial data, as we show in Appendix B. Furthermore, this 
equation can be described within the Hamiltonian framework:

Theorem 1.5. (=Theorem 7.2) The Euler equation (3) for a flow with a vortex sheet 
written on the dual DSVect(M)∗ of the algebroid is Hamiltonian with respect to the 
natural Poisson structure on the dual algebroid and the Hamiltonian function given by 
the L2 kinetic energy.

This theorem is an analog of the Hamiltonian property of the Euler–Arnold equation 
on the dual to a Lie algebra with respect to the Lie–Poisson structure.

Return to the metric properties of the groupoid Euler–Arnold equation. Now the 
metric (2) on vortex sheets appears as a natural projection from the groupoid of dif-
feomorphism pairs to the space of vortex sheets. Namely, given initial vortex sheet 
Γ ∈ VS(M), consider the subset DSDiff(M)Γ ⊂ DSDiff(M) of pairs of diffeomorphisms 
with domains D±

Γ (a so-called source fiber of the groupoid DSDiff(M)) and equipped with 
the right-invariant source-wise L2-metric on DSDiff(M). Then the following statement 
generalizes Theorem 1.2:

Theorem 1.6. (=Theorem 7.7) For any initial vortex sheet Γ ∈ VS(M), the groupoid tar-
get mapping trg : (DSDiff(M)Γ, 〈 , 〉L2) → (VS(M), 〈 , 〉VS) is a Riemannian submersion 
to the space VS of vortex sheets equipped with the metric 〈 , 〉VS. In particular, horizontal 
geodesics on DSDiff(M)Γ project to geodesics on vortex sheets VS.

In particular, the submersion property means that horizontal geodesics in the space 
DSDiff(M)Γ correspond to gradient fields, which implies Theorem 1.2. Note that these 
gradient fields have the form u = χ+

Γ∇f+ + χ−
Γ∇f− in M , see Corollary C.1 below and 

Fig. 2. This also allows one to define a nonlocal H−1/2-type metric of hydrodynamical 
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Fig. 2. Riemannian submersion for the groupoid. Here DSDiff(M)ΓΓ is the group of discontinuous diffeomor-
phisms SDiff(D+

Γ ) × SDiff(D−
Γ ), and u is a horizontal vector field projecting to ξ = #u. The latter can be 

regarded as the velocity of the vortex sheet Γ, and 〈ξ, ξ〉VS = 〈u, u〉L2 .

Fig. 3. (a) Pure vortex sheet solutions on a sphere. Their motion is a geodesic on VS(S2). (b) Irrotational, 
but not pure, vortex sheet solutions. Their motion can be viewed as a trajectory of a Newtonian system in 
a magnetic field on VS(T 2).

origin (based on Neumann-to-Dirichlet operators) on the space of shapes, and it contrasts 
previously considered local Hs metrics on those spaces with s ≥ 0, see Appendix C.

Remark 1.7. The smoothness of the groupoid and algebroid is understood below in the 
Fréchet C∞ setting. Similarly, one can consider the setting of Hilbert manifolds modeled 
on Sobolev Hs spaces for sufficiently large s, cf. [8].

1.2. Examples

First consider solutions of the Euler equation that are irrotational outside of vor-
tex sheets, i.e. those whose vorticity includes only singular part supported on Γ. The 
corresponding velocity is locally potential outside of Γ. If the velocity field is globally 
potential (initially and hence for all times) outside Γ, then such a solution corresponds 
to a horizontal geodesic on DSDiff(M)Γ and to a geodesic on the space VS(M) of vortex 
sheets (we call such solutions pure vortex sheet motions). In the case where the velocity 
field is only locally potential (we call such solutions irrotational flows with vortex sheets) 
the corresponding solution can be understood as a trajectory of a Newtonian system in 
a magnetic field.

Example 1.8. Consider a closed curve Γ on a two-dimensional sphere M = S2 as a 
vortex sheet, see Fig. 3(a). In this case the domains D±

Γ are simply-connected, and 
hence irrotational fields in D±

Γ are globally potential with harmonic potentials f±. The 
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Fig. 4. Smooth levels of the vorticity ω on a sphere are transported by the flow with velocity u± and hence 
getting broken along the vortex sheet Γ.

curve motion is defined by the normal to Γ vector field, and hence the potentials f± are 
solutions of the corresponding Neumann problem, see Section 7.2. The common normal 
component of ∇f±, i.e., the curve velocity, can be regarded as a tangent vector to the 
space of vortex sheets. The corresponding curve motion is a geodesic in the metric 〈 , 〉VS

on the space of curves in S2 bounding the same area, see Theorem 1.2.

Example 1.9. Assume now that the vorticity has support only on Γ, but the field is 
only locally potential (i.e., the corresponding potential is multivalued). For instance, 
consider a two-torus M = T 2 with vortex sheet Γ = Γ1 ∪ Γ2 being the union of two 
cross-sections, see Fig. 3(b), where the velocity field in D+

Γ has positive circulation in 
the meridional direction, while the velocity field in D−

Γ is potential. The corresponding 
irrotational vortex sheet solutions can be described as a Hamiltonian motion on the 
cotangent bundle T ∗VS(T 2), which is a natural system with kinetic and potential energy 
and where the standard symplectic structure is twisted by adding a “magnetic term”, 
a closed 2-form on the base VS(T 2), see Section 7.3. The geodesic motion itself would 
correspond to a pure kinetic energy in the standard symplectic structure on T ∗VS(T 2), 
see Section 7.2.

Finally, note that general solutions with vortex sheets include both a smooth part 
of the vorticity and its singular part. As we mentioned, they correspond to arbitrary 
geodesics in the right-invariant L2-metric on the groupoid DSDiff(M) and have a Hamil-
tonian description as well.

Example 1.10. Consider a vortex sheet solution on a two-dimensional sphere M = S2, 
where initially the singular part of the vorticity, the vortex sheet itself, is a meridian, 
while level curves of the smooth part of the vorticity are parallels, i.e. flat horizontal 
sections, see Fig. 4. Then on different sides of the meridian the velocity has a jump and 
it starts moving the frozen-in vorticity in different directions. Indeed, the fluid flow in 
this case is a combination of two motions: the smooth part of the vorticity pulls the fluid 
along horizontal sections, while the singular part of the vorticity rotates eastern and 
western hemispheres with respect to each other. So the vorticity levels will immediately 
break once the motion starts. This example shows that such a system (as well as a generic 
initial condition with both singular and smooth vorticity parts present) does not admit a 
description within the framework of smooth diffeomorphisms. The vorticity as a whole is 
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Table 1
Group- and groupoid-theoretic frameworks for Euler–Arnold-type equations.

General notion / 
hydro setting

Group setting /
ideal fluid on M

Groupoid setting /
flow with vortex sheet

Section for general / 
hydro setting

Configuration space 
(positions)

Lie group G
SDiff(M)
volume-preserving 
diffeomorphism group

Lie groupoid G ⇒ B
DSDiff(M) ⇒ VS(M)
groupoid of 
diffeomorphism pairs

Section 4.1
Section 6.1

Phase space 
(velocities)

Lie algebra g
SVect(M) divergence-free 
vector fields

Lie algebroid A → B
DSVect(M) → VS(M)
algebroid of discontinuous 
vector fields

Section 4.2
Section 6.2

Lie bracket Commutator of vector 
fields

Bracket of sections, 
formula (13)

Section 6.2

Dual space Lie algebra dual g∗

Ω1(M) / Ω1
ex(M) 1-form 

cosets

Algebroid dual A∗ → B
DΩ1(M, Γ) / DΩ1

ex(M, Γ)
discontinuous 1-form 
cosets

Section 4.3
Section 6.4

Poisson structure 
(Hamiltonian 
operator)

Lie–Poisson bracket on g∗

Lie derivative ad∗
u = Lu

Poisson bracket on A∗

Hamiltonian operator P[α]

Section 4.3
Section 6.5

Inertia operator 
(kinetic energy)

I : g → g
∗

Metric operator u �→ [u�]
I : A → A∗

u �→ [u�] on discontinuous 
vector fields

Section 4.4
Section 7.1

Hydrodynamical 
Euler equation

∂t[α] + Lu[α] = 0 ∂R
t [α] + [iudRα +

1
2d

Riuα] = 0
Section 7.1

Base / space of 
vortex sheets

One point VS(M) Section 7.2

not transported by the smooth flow any longer and the introduction of a diffeomorphism 
groupoid is a necessity!

Remark 1.11. It is also worth mentioning that in 2D the evolution of vortex curves in R2

is governed by the Birkhoff–Rott equation, which is obtained from the Euler equation 
(3) provided that one can regard the strength of the singular vorticity as a parameter 
along the vortex curve. The framework in this paper provides a similar description in 
the setting of a compact ambient manifold (say, sphere or torus) and without assuming 
that kind of parametrization.

1.3. General groupoid framework for Euler–Arnold-type equations

Since the groupoid-theoretic framework for Euler–Arnold-type equations developed 
in the paper has a universal character, we provide in Table 1 a dictionary of corre-
sponding notions in the cases of groups and groupoids, as well as their hydrodynamical 
implementation.

This universal groupoid-theoretic framework can be also applied to include such sys-
tems as flows with a free moving boundary or a rigid body moving in a fluid, as well as 
the existing algebroid approach to nonholonomic systems with symmetry, etc., see e.g. 
[19].
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Remark 1.12. While the literature on vortex sheets is enormous, here we would like to 
mention several papers which might be related to a more geometric point of view, in 
addition to those mentioned above. In [18,11] point vortices and more generally vortex 
membranes were regarded as singular coadjoint orbits of the group of volume-preserving 
diffeomorphisms. They correspond to vorticities with support on codimension-two sub-
manifolds. This approach does not quite work for vortex sheets, because the vorticity 
on two sides of the sheet is transported by two different diffeomorphisms, and hence the 
discontinuous flow does not need to preserve the orbits of the group coadjoint action, 
see Example 1.10. The paper [15] gives a Hamiltonian formulation for the incompressible 
Euler equation in the moving boundary case. That approach is based on Hamiltonian 
reduction of the cotangent bundle of a principal bundle, which might be thought of as 
dual to our groupoid approach, cf. Section 3.1. The groupoid framework proposed below 
seems to be more natural in this setting, while the derived algebroid formulas have a uni-
versal character. We will touch on the free boundary problem in more detail in a future 
publication. Lagrangian formalism for Lie groupoids was discussed in [24]. A possibility 
of using the language of Lie algebroids in fluid dynamics was also discussed in [10].

We expect that this approach can be also applied to derive Kelvin–Helmholtz insta-
bilities of vortex sheets [17], to study relations to problems of optimal mass transport, 
cf. [12,23], as well as to use this technique to obtain existence and uniqueness results for 
the Euler equation with discontinuous initial data, cf. e.g. [13].

Acknowledgments. We are grateful to F. Otto for fruitful discussions. This research 
was partially supported by an NSERC research grant. A.I. would like to thank Max 
Planck Institute for Mathematics, Bonn, for hospitality and support during some phases 
of this project.

2. Group setting of ideal hydrodynamics

2.1. Geodesic setting for the Euler equation

We start with the general setting of ideal fluid dynamics. Let M be an n-dimensional 
Riemannian manifold with the Riemannian volume form μ and, possibly, with boundary 
∂M . As we discussed in the introduction, an ideal incompressible fluid filling M moves 
according to the hydrodynamical Euler equations:

{
∂tu + ∇uu = −∇p ,

div u = 0 and u ‖ ∂M .
(4)

The notation ∇uu stands for the Riemannian covariant derivative of the field u along 
itself. The pressure function p entering the Euler equation is defined uniquely modulo 
an additive constant by the above constraints on the velocity u.
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Arnold [1] showed that the Euler equations can be regarded as an equation of the 
geodesic flow on the group SDiff(M) := {φ ∈ Diff(M) | φ∗μ = μ} of volume-preserving 
diffeomorphisms of M with respect to the right-invariant L2-metric given by the kinetic 
energy of the fluid. In this approach an evolution of the velocity field u(t) according 
to the Euler equations is understood as an evolution of the vector in the Lie algebra 
SVect(M) = {u ∈ Vect(M) | Luμ = 0} of divergence-free vector fields on M tangent 
to the boundary ∂M (here Lu stands for the Lie derivative along the field u). This 
time-dependent velocity u(t) traces the geodesic on the group SDiff(M) defined by the 
given initial condition u(0) = u0. Note that this setting assumes sufficient smoothness 
of the initial velocity: it is usually taken to be in the Sobolev Hs space for sufficiently 
high s: s > n

2 + 1, where n = dimM , cf. [8]. Alternatively, one can also consider the 
Fréchet setting of C∞-diffeomorphisms, rather than the setting of Hilbert manifolds of 
Hs-diffeomorphisms.

Remark 2.1. The geodesic interpretation of the Euler equation (4) can be obtained, 
e.g., for a flat M without boundary, as follows, see [1,2]. Consider the flow (t, x) �→
φ(t, x) defined by the velocity field u(t, x), which describes the motion of fluid particles: 
∂tφ(t, x) = u(t, φ(t, x)), φ(0, x) = x for all x ∈ M and t ≥ 0. The chain rule for the time 
derivative immediately gives

∂2
t φ(t, x) = (∂tu + ∇uu)(t, φ(t, x)) ,

and hence the Euler equation (4) is equivalent to

∂2
t φ(t, x) = −(∇p)(t, φ(t, x)) ,

while the incompressibility condition div u = 0 becomes det(∂xφ(t, x)) = 1 for any t. The 
latter form of the Euler equation (for a smooth flow φ(t, x)) says that the acceleration of 
the flow at any position φ is given by the gradient of a function (right-translated to φ). 
Therefore this acceleration is L2-orthogonal to the set of volume-preserving diffeomor-
phisms at any point φ ∈ SDiff(M): 

∫
M

(∇p, w) μ = 0 for all divergence-free vector fields 
w and all smooth functions p on M . In other words, any solution φ(t, .) of the Euler 
equation is a geodesic line with respect to the induced L2-metric on the group SDiff(M). 
This L2-metric is the kinetic energy of the fluid flow: for a velocity field u its energy is 
E(v) = 1

2
∫
M

(u, u) μ and it is right-invariant on the group of volume-preserving diffeo-
morphisms. Thus the Euler equation defines geodesics in the right-invariant L2-metric 
on the group SDiff(M).

2.2. Hamiltonian framework of the Euler equation

The geodesic description implies the following Hamiltonian framework for the Euler 
equation. Consider the (smooth) dual space g∗ = SVect∗(M) to the Lie algebra g =



A. Izosimov, B. Khesin / Advances in Mathematics 338 (2018) 447–501 457
SVect(M) of divergence-free vector fields on M (tangent to the boundary). This dual 
space has a natural description as the space of cosets g∗ = Ω1(M)/dΩ0(M), where 
Ωk(M) is the space of C∞ k-forms on M . For a 1-form α on M its coset of 1-forms is

[α] = {α + df | for all f ∈ C∞(M)} ∈ Ω1(M)/dΩ0(M) .

The pairing between cosets and divergence-free vector fields is straightforward: 〈[α], w〉 :=∫
M

α(w) μ for any field w ∈ SVect(M). (Note that in the case of M with boundary, 
no assumptions on the behavior of 1-forms or function differentials on the boundary 
are imposed.) The coadjoint action of the group SDiff(M) on the dual g∗ is given by 
the change of coordinates in (cosets of) 1-forms on M by means of volume-preserving 
diffeomorphisms.

A Riemannian metric ( , ) on the manifold M allows one to identify the Lie algebra 
and (the smooth part of) its dual by means of the so-called inertia operator: given a 
vector field u on M one defines the 1-form α = u� as the pointwise inner product with 
the velocity field u: u�(w) := (u, w) for all w ∈ TxM . Note also that divergence-free 
fields u correspond to co-closed 1-forms u�. The Euler equation (4) rewritten on 1-forms 
α = u� is

∂tα + Luα = −dP

for an appropriate function P on M . In terms of the cosets of 1-forms [α], the Euler 
equation on the dual space g∗ looks as follows:

∂t[α] + Lu[α] = 0 . (5)

It follows from the geodesic description that the Euler equation (5) on g∗ = SVect∗(M)
is a Hamiltonian equation with the Hamiltonian functional H given by the fluid’s kinetic 
energy,

H ([α]) = E(u) = 1
2

∫
M

(u, u)μ

for α = u�. The corresponding Poisson structure is given by the natural linear Lie–Poisson 
bracket on the dual space g∗ of the Lie algebra g, see details in [1,2]. The corresponding 
Hamiltonian operator is given by the Lie algebra coadjoint action ad∗

u, which in the case 
of the diffeomorphism group corresponds to the Lie derivative: ad∗

u = Lu. Its symplectic 
leaves are coadjoint orbits of the corresponding group SDiff(M).

Remark 2.2. According to the Euler equation (5) in any dimension the coset of 1-forms 
[α] evolves by a volume-preserving change of coordinates, i.e. during the Euler evolution 
it remains in the same coadjoint orbit in g∗. Introduce the vorticity 2-form ω := du�

as the differential of the 1-form α = u� and note that the vorticity exact 2-form is 
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well-defined for cosets [α]: 1-forms α in the same coset have equal vorticities ω = dα. 
The corresponding Euler equation assumes the vorticity (or Helmholtz) form

∂tω + Luω = 0 ,

which means that the vorticity form is transported by (or “frozen into”) the fluid flow 
(Kelvin’s theorem). The definition of vorticity ω as an exact 2-form ω = du� makes sense 
for a manifold M of any dimension. (In 2D the vorticity 2-form can be identified with 
the vorticity function, while in 3D it can be regarded as the vorticity vector field curlv
by means of the relation icurl vμ = ω for the volume form μ.)

Remark 2.3. The cases of singular vorticity are of particular importance. A vortex mem-
brane (or a vortex filament in 3D) corresponds to a distributional 2-form (i.e., de Rham 
(n −2)-current) ω = C ·δN supported on a submanifold N of codimension 2 in M , where 
the constant C is called the strength of the membrane. A vortex sheet can be associ-
ated with a de Rham (n − 2)-current ω = df ∧ δΓ supported on a hypersurface Γ (of 
codimension 1) in M , where df is an exact 1-form on Γ. Vortex sheets appear in a fluid 
with a jump discontinuity of the velocity along a hypersurface. In this paper we will be 
particularly concerned with the setting where Γ ⊂ M is homologous to zero, and it splits 
the manifold M into two connected parts, D+

Γ ∪ D−
Γ = M \ Γ, being the boundary of 

each of them (with appropriate orientations). For the vorticity 2-form ω = du� supported 
on Γ, ω = df ∧ δΓ, the velocity field u is irrotational (i.e. curl-free) outside Γ and hence 
locally potential in M \ Γ. Note that the difference of the velocities on different sides of 
Γ corresponds to the 1-form df with help of the metric: (v+ − v−)�|Γ = df , see e.g. [11].

If the field u is globally potential on M \ Γ, we call the corresponding solution u(t)
a pure vortex sheet solution. The motion of vortex sheets for such solutions is the main 
object of our consideration and it admits a geodesic interpretation in terms of a metric on 
Γ’s. If the field u is only locally potential on M \ Γ, we call the corresponding evolution 
of velocity u an irrotational vortex sheet solution. This evolution admits a Hamiltonian 
interpretation on the cotangent bundle to the space of vortex sheets. Alternatively, it 
also admits a geodesic interpretation on a certain extension of the space of Γ’s, which 
we will address in a future publication. For general solutions u with vortex sheets (and 
not necessarily vanishing curl) we give a Hamiltonian description, as well as the geodesic 
interpretation on the diffeomorphism groupoid, which however does not reduce to the 
geodesic interpretation on vortex sheets only, see Section 7.

3. Spaces of densities and vortex sheets

3.1. Otto calculus on the space of densities

The Euler equation, being a geodesic equation on the group of volume-preserving 
diffeomorphisms, is closely related (in a sense, dual) to the theory of optimal mass 
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transport, and in particular, to the problem of moving one mass (or density) to another 
while minimizing a certain cost. In this section we discuss the relation of metric properties 
of the diffeomorphism group and the space of densities to show an analogy with the 
framework of vortex sheets in the next section.

Assume that M is a compact n-dimensional Riemannian manifold without boundary 
and consider the group SDiff(M) of diffeomorphisms preserving the volume form μ as 
a subgroup in the group Diff(M) of all smooth diffeomorphisms of M . Define a (weak) 
Riemannian metric on the group Diff(M) in the following straightforward way: given 
u, v ∈ Vect(M), the inner product of two vectors u ◦ φ, v ◦ φ ∈ TφDiff(M) at any point 
φ ∈ Diff(M) is

〈u ◦ φ, v ◦ φ〉Diff =
∫
M

(u, v)φ∗μ . (6)

This metric is right-invariant with respect to the action of the subgroup SDiff(M) of 
volume-preserving diffeomorphisms, although it is not right-invariant with respect to 
the action of the whole group Diff(M).

Let μ be a smooth reference volume form (or density) on M of unit total mass, and 
consider the projection π : Diff(M) → Dens(M) of diffeomorphisms onto the space 
Dens(M) of (normalized) smooth densities on M . The diffeomorphism group Diff(M) is 
fibered over Dens(M) by means of this projection π as follows: the fiber over a volume 
form μ̃ consists of all diffeomorphisms φ that push μ to μ̃, φ∗μ = μ̃. (Note that diffeo-
morphisms from Diff(M) act transitively on smooth normalized densities, according to 
Moser’s theorem.) In other words, two diffeomorphisms φ1 and φ2 belong to the same 
fiber if and only if φ1 = φ2 ◦ϕ for some diffeomorphism ϕ preserving the volume form μ.

Remark 3.1. The projection π can be extended to Borel maps and densities that are 
absolutely continuous with respect to the Lebesgue measure. More precisely, let μ and μ̃
be two measures of the same total volume, and let dist(x, y) be the (geodesic) distance 
function on M . Consider the following optimal mass transport problem: Find a Borel 
map φ : M → M that pushes the measure μ forward to μ̃ and attains the minimum 
of the L2-cost functional 

∫
M

dist2(x, φ(x))μ among all such maps. The minimal cost 
of transport defines a metric (called the Kantorovich or Wasserstein metric) Dist on 
densities:

Dist2(μ, μ̃) := inf
φ

{∫
M

dist2(x, φ(x))μ | φ∗μ = μ̃
}
.

It turns out that this mass transport problem admits a unique solution (defined up to 
measure-zero sets), called the optimal map φ̃, see, e.g., [5,23]. Furthermore, a 1-parameter 
family of maps φ(t) joining φ(0) = id with the map φ(1) = φ̃, such that φ(t) pushes μ
to μ(t) := φ(t)∗μ in an optimal way for every t, defines a geodesic μ(t) between μ and μ̃
in the space of densities with respect to the metric Dist; see [20,23] for details.
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Here we recall an infinitely smooth (formal) setting of this problem, while the cor-
responding setting of Sobolev spaces can be found e.g. in [12]. One can see that the 
Kantorovich metric Dist is generated by a (weak) Riemannian metric on the space Dens
of smooth densities [3]. Thus both Diff and Dens can be regarded as infinite-dimensional 
Riemannian manifolds.

Proposition 3.2. [20] The bundle map π : Diff(M) → Dens(M) is a Riemannian submer-
sion of the metric 〈 , 〉Diff on the diffeomorphism group Diff(M) to the metric Dist on 
the density space Dens(M). The horizontal (i.e., normal to fibers) spaces in the bundle 
Diff(M) → Dens(M) consist of right-translated gradient fields.

Recall that for two Riemannian manifolds P and B a submersion π : P → B is 
a smooth map which has a surjective differential and preserves lengths of horizontal 
tangent vectors to P . For a bundle P → B this means that on P there is a distribution 
of horizontal spaces orthogonal to fibers and projecting isometrically to the tangent 
spaces to B. Geodesics on B can be lifted to horizontal geodesics in P , and the lift is 
unique for a given initial point in P .

Remark 3.3. In short, the proposition follows from the Hodge decomposition Vect =
SVect ⊕L2 Grad for vector fields on M : any vector field v decomposes uniquely into 
the sum v = w + ∇p of a divergence-free field w and a gradient field ∇p, which are 
L2-orthogonal to each other: 

∫
M

(w, ∇p) μ = 0. The vertical tangent space at the identity 
coincides with SVect(M), while the horizontal space is Grad(M). The vertical space 
(tangent to a fiber) at a point φ ∈ Diff(M) consists of w ◦φ, divergence-free vector fields 
w right-translated by the diffeomorphism φ, while the horizontal space is given by the 
translated gradient fields, (∇p) ◦ φ. The L2-type metric 〈 , 〉Diff on horizontal spaces for 
different points of the same fiber projects isometrically to one and the same metric on 
the base, due to the SDiff-invariance of the metric. Now the proposition follows from the 
observation that the above metric Dist is Riemannian and generated by the L2 metric 
on gradients, see [3].

One of the main properties of a Riemannian submersion is the following feature of 
geodesics:

Corollary 3.4. Any geodesic initially tangent to a horizontal space on the full diffeomor-
phism group Diff(M) remains horizontal, i.e., tangent to the gradient distribution on 
this group. There is a one-to-one correspondence between geodesics on the base Dens(M)
starting at the density μ and horizontal geodesics in Diff(M) starting at the identity 
diffeomorphism id.

Remark 3.5. The Riemannian submersion property for the fibration Diff(M) → Dens(M)
can be put in the framework of symplectic reduction. For a principal bundle π : P → B

with the structure group G the symplectic reduction of the cotangent bundle T ∗P over 
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the G-action gives the cotangent bundle T ∗B = T ∗P//G. If the bundle P is equipped 
with a G-invariant Riemannian metric 〈 , 〉P it induces the metric 〈 , 〉B on the base B. 
The Riemannian submersion of P to the base B, equipped with the metrics 〈 , 〉P and 
〈 , 〉B respectively, is the result of the symplectic reduction with respect to the G-action. 
Thus Proposition 3.2 can be viewed within the framework of symplectic reduction with 
P = Diff(M), G = SDiff(M), and B = Dens(M).

3.2. Calculus on the space of vortex sheets

Below we show that the above framework has an analog for the space of vortex sheets. 
We first consider a preliminary model of description of vortex sheets, emphasizing simi-
larities with the description above, and adjust it later.

As we mentioned, vortex sheets correspond to a jump discontinuity of the fluid velocity 
along a hypersurface in a flow domain. Below we assume that the velocity is gradient 
in the complement to the hypersurface. For a compact connected closed manifold M
equipped with a volume form μ let Γ0 ⊂ M be a cooriented closed embedded (but not 
necessarily connected) smooth hypersurface splitting M into two connected parts, D+

Γ0
∪

Γ0 ∪D−
Γ0

= M . (The case of more connected components, as well as the case of M with 
boundary, require only minor adjustments.) Denote by VS(M) the space of vortex sheets 
that are images of Γ0 under volume-preserving diffeomorphisms of the ambient manifold 
M : VS(M) := {Γ = φ(Γ0) | φ ∈ SDiff(M)}. Then by construction the group SDiff(M)
is fibered over VS(M): the fiber FΓ0 over Γ0 ∈ VS(M) is the subgroup SDiff(M)Γ0 of 
volume-preserving diffeomorphisms of M mapping Γ0 ⊂ M into itself, while the fiber 
FΓ over a hypersurface Γ consists of all such volume-preserving diffeomorphisms of M
that map Γ0 to Γ. In particular, the map SDiff(M) → VS(M) is surjective. The vertical 
tangent space (at the identity) is the Lie subalgebra of all divergence-free vector fields 
on M tangent to Γ0, while at any other point the vertical space consists of those very 
vector fields right-translated by a volume-preserving diffeomorphism moving Γ0 to Γ. 
The tangent space to VS(M) at Γ can be regarded as the space of normal vector fields 
v on Γ with an additional “zero-mean constraint”: the (n − 1)-form ivμ has zero integral 
over Γ, which corresponds to the volume conservation inside Γ for any its infinitesimal 
motion.

Definition 3.6. Define the following (weak) metric on the space VS(M) of vortex sheets.2
Let v ∈ TΓVS(M) be a vector field attached at a vortex sheet Γ ⊂ M and normal to it. 
Then its square length is

〈v, v〉VS := inf {〈u, u〉L2 | div u = 0 and (u, ν) ν = v on Γ} ,

where u ∈ SVect(M) is a smooth vector field in M , and ν is the unit normal field to Γ.

2 Weakness of metric means that the topology induced by the metric is weaker than the Hk-topology 
considered on sufficiently smooth vortex sheets.
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Recall that the group SDiff(M) is also endowed with a natural right-invariant 
L2-metric. At the group identity it is given by the L2-inner product on divergence-
free vector fields: 〈u, u〉L2 =

∫
M

(u, u)μ, where u is a vector field at id ∈ SDiff(M). 
For any diffeomorphism φ ∈ SDiff(M) we set by right-invariance 〈u ◦ φ, u ◦ φ〉L2 :=∫
M

(u ◦ φ(x), u ◦ φ(x))φ(x)μ, where we take into account that φ∗μ = μ for a volume-
preserving diffeomorphism φ. While vortex sheets cannot be described solely within the 
setting of diffeomorphism groups, as the motion of particles is discontinuous near Γ, their 
heuristic description can be given as follows.

“Proposition” 3.7. The bundle projection (SDiff(M), 〈 , 〉L2) → (VS(M), 〈 , 〉VS) is a Rie-
mannian submersion.

The fact that this is a Riemannian submersion is essentially built in Definition 3.6
of the metric on the space of vortex sheets VS(M). This heuristic statement implic-
itly means that vortex sheets are moved by smooth diffeomorphisms, which turns out 
to be not the case. However, such a geometric viewpoint leads to interesting conse-
quences: geodesics on the base VS(M) are obtained by projecting horizontal geodesics 
on SDiff(M). Recall that all geodesics on SDiff(M) describe incompressible fluid motions 
and are given by solutions of the Euler equation, see Remark 2.1. Assuming that for a 
given vector v there is a “horizontal” vector u realizing the infimum in the definition 
above, i.e. a smooth divergence-free vector field u on M , having the prescribed normal 
component v on a vortex sheet Γ we come to the following corollary.

Corollary 3.8. [16] Geodesics with respect to the metric 〈 , 〉VS on the space VS(M) de-
scribe the motion of vortex sheets in an incompressible flow.

However, the rigorous setting is more complicated. The reason is that, for connected Γ, 
there are no horizontal vectors for the bundle SDiff(M) → VS(M) in the smooth set-
ting: no smooth divergence-free vector field is L2-orthogonal to all divergence-free vector 
fields tangent to Γ. (Indeed, divergence-free fields are L2-orthogonal to gradients off 
Γ, so for smooth fields in the orthogonal complement their smooth potentials must 
be globally defined harmonic functions on M , i.e. constants. For disconnected Γ there 
is at most a finite-dimensional space of horizontal vectors.) To describe vortex sheets 
we need to consider vector fields admitting jumps on a hypersurface, and hence maps 
which are diffeomorphisms on the interior and exterior of the hypersurface. Further-
more, in the Hamiltonian setting the vorticity is singular in the case of vortex sheets, 
and should belong to a certain completion of a smooth dual space to the Lie alge-
bra SVect(M). While the geometric picture above gives a hint of the framework to 
follow, the group description is not valid for vortex sheets and we need to consider a 
groupoid.

Remark 3.9. We will see that while general solutions with vortex sheets can be de-
scribed as geodesics of a certain right-invariant metric on a groupoid, for special so-
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lutions this metric can be reduced (as a submersion) to a much smaller space, the 
space of vortex sheets. Namely, potential vortex sheets solutions (cf. Remark 2.3) can 
be described as geodesics in the above metric on the space VS(M). For irrotational
vortex sheets solutions we present the corresponding Hamiltonian formulation, see Sec-
tion 7.3.

One should also mention that the metric 〈 , 〉VS on the space VS(M) can be 
used to define a natural hydrodynamical metric on the space of shapes (of the 
same volume) and hence the corresponding optimal transport problem, see Ap-
pendix C.

4. Generalities on Lie groupoids and Lie algebroids

In this section we briefly recall basic facts about Lie groupoids and Lie algebroids 
(details can be found, e.g., in [7]). For the sake of exposition we assume that all objects 
in this section are finite-dimensional (except for subsection 4.4).

4.1. Lie groupoids

Definition 4.1. A groupoid G ⇒ B is a pair of sets, B (the set of objects) and G (the set 
of arrows), endowed with the following structures:

1. There are two maps src, trg : G → B, called the source map and the target map.
2. There is a partial binary operation (g, h) �→ gh on G, which is defined for all pairs 

g, h ∈ G such that src(g) = trg(h), and has the following properties.

(a) The source of the product is the source of the arrow applied first: src(gh) =
src(h), while the target of the product is the target of the arrow applied second: 
trg(gh) = trg(g).

(b) Associativity: g(hk) = (gh)k whenever any of these expressions is well-defined.
(c) Identity: for each x ∈ B, there is an element idx ∈ G such that src(idx) =

trg(idx) = x and for every g ∈ G one has idtrg(g) · g = g · idsrc(g) = g.
(d) Inverse: for each g ∈ G, there is an element g−1 ∈ G such that src(g−1) = trg(g), 

trg(g−1) = src(g), g−1g = idsrc(g), and gg−1 = idtrg(g).

In what follows, we often use the term groupoid referring to the set of arrows G. If 
G ⇒ B is a groupoid, we say that G is a groupoid over B.

A groupoid G ⇒ B is called a Lie groupoid if G, B are manifolds, the source and target 
maps are submersions, and the maps (g, h) �→ gh, x �→ idx, and g �→ g−1 are smooth. 
(The domain of the multiplication map is {(x, y) ∈ G × G | src(x) = trg(y)}. The 
requirement that src and trg are submersions guarantees that this set is a submanifold 
of G × G, so smoothness of multiplication is well-defined.)
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Example 4.2.

(a) Any Lie group G is a Lie groupoid over a point.
(b) For any smooth manifold B, the set G := B×B is a Lie groupoid over B, called the 

pair groupoid. The source and the target are defined by src(x, y) = x, trg(x, y) = y, 
while the product is given by (y, z)(x, y) := (x, z).

(c) Let B be a smooth manifold, and let G be a Lie group acting on B. Then one can 
define the so-called action (or transformation) Lie groupoid G �B ⇒ B. The points 
of G � B are triples (x, y, g), where x, y ∈ B, g ∈ G, and gx = y. The source map 
is given by src(x, y, g) := x, the target is trg(x, y, g) := y, and the multiplication is 
defined by (y, z, h)(x, y, g) := (x, z, hg).

In the remaining part of this subsection we introduce several standard notions related 
to groupoids.

Definition 4.3. A groupoid G ⇒ B is called transitive if for any x, y ∈ B there exists 
g ∈ G such that src(g) = x and trg(g) = y.

Example 4.4. An action groupoid G �B is transitive if and only if the G-action on B is 
transitive. For applications in this paper we will consider only transitive groupoids.

Definition 4.5. Let G ⇒ B be a groupoid. Then the source fiber Gx of G corresponding 
to x ∈ B is the set Gx := {g ∈ G | src(g) = x}. The isotropy group Gx

x of G corresponding 
to x ∈ B is the set Gx

x := {g ∈ G | src(g) = trg(g) = x}. (This is indeed a group under 
the operation induced from the groupoid multiplication.)

Example 4.6. For an action groupoid G �B, any source fiber is canonically identified with 
the group G, while the isotropy group corresponding to x ∈ B is the isotropy subgroup 
(the stabilizer) of x under the G-action.

4.2. Lie algebroids

The infinitesimal object associated with a Lie groupoid is a Lie algebroid.

Definition 4.7. A Lie algebroid A over a manifold B is a vector bundle A → B endowed 
with a Lie bracket [ , ] on C∞-smooth sections and a vector bundle morphism #: A →
TB, called the anchor map, such that for any two C∞-sections ζ, η of A and any smooth 
function f ∈ C∞(B), one has the following version of the Leibniz rule:

[ζ, fη] = f [ζ, η] + (#ζ · f)η .

Remark 4.8. Here and in what follows #ζ · f stands for the derivative of the function 
f along the vector field #ζ on B. It also follows from the Leibniz rule and the Ja-
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Fig. 5. A transitive groupoid G ⇒ B is depicted as a square. The vertical projection is the source map 
src : G → B, the horizontal projection is the target map trg : G → B, while horizontal arrows are right 
translations. A section of the algebroid is a collection of vertical vectors attached to the diagonal src = trg.

cobi identity for the bracket that the anchor map induces a Lie algebra homomorphism 
from sections of A to vector fields on B: #[ζ, η] = [#ζ, #η], where the bracket on the 
right-hand side is the standard Lie bracket of vector fields.

Definition 4.9. The Lie algebroid A → B corresponding to a Lie groupoid G ⇒ B is 
constructed in the following way. The fiber of A over x ∈ B is the tangent space to the 
source fiber Gx at the point idx. The anchor map on this fiber is defined as the differential 
of the target map trg : Gx → B, while the bracket on sections is defined as follows. Every 
section of A can be uniquely extended to a right-invariant vector field on G tangent to 
source fibers, and the correspondence between such vector fields and sections of A is a 
vector space isomorphism (see Fig. 5). This allows one to define the bracket of sections 
of A as the Lie bracket of the corresponding right-invariant vector fields (which is again 
a right-invariant vector field tangent to source fibers, and, therefore, corresponds to a 
section of A).

Remark 4.10. For a transitive groupoid G, the Lie algebra of right-invariant vector fields 
tangent to source fibers is isomorphic via restriction to the Lie algebra of vector fields 
on a fixed source fiber Gx invariant with respect to the right action of the vertex group 
Gx
x . (See Fig. 5. In this figure, a vector field tangent to a source fiber Gx is represented 

as a collection of vertical vectors tangent to the vertical line src = x.) Therefore, in 
the transitive case one can also define the bracket in the algebroid A as the bracket of 
Gx
x -invariant vector fields on Gx, and A is isomorphic to the algebroid TGx / Gx

x .

Example 4.11. For Lie groupoids of Example 4.2, the corresponding algebroids are:

(a) The Lie algebra g of the group G, considered as a Lie algebroid over a point.
(b) The tangent bundle TB of the manifold B. The corresponding bracket on sections 

is the standard Lie bracket of vector fields, while the anchor map is the identity.
(c) The action Lie algebroid g �B, where g is the Lie algebra of the group G. As a vector 

bundle, g �B is a trivial bundle over B with fiber g. The anchor map g �B → TB is 
defined for an element (u, x) ∈ g �B (where u ∈ g and x ∈ B) by #(u, x) = ρu(x), 
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with ρu being the infinitesimal generator of the G-action corresponding to u ∈ g. 
The bracket of sections is given by

[ζ, η](x) := [ζ(x), η(x)] + #ζ(x) · η − #η(x) · ζ ,

where the derivatives #ζ(x) ·η, #η(x) · ζ are defined by identifying sections of g �B

with g-valued functions on B.

In the remaining part of this subsection we introduce several standard notions related 
to Lie algebroids.

Definition 4.12. A Lie algebroid A → B is called transitive if the anchor map is surjective.

One can prove that the Lie algebroid associated with a transitive Lie groupoid is 
transitive. (The converse is also true provided that the base B is connected.)

Further, we define an isotropy algebra. Let x ∈ B, and let u, v ∈ Ker#x be elements of 
the kernel of the anchor map restricted to the fiber of A over x. Let also û, ̂v be arbitrary 
smooth sections of A such that û(x) = u and v̂(x) = v. Then one has the following result.

Proposition 4.13. The value [û, ̂v](x) depends only on u, v, but not on the choice of the 
extensions û, ̂v. So, the formula [u, v] := [û, ̂v](x) gives a well-defined bracket on Ker#x. 
The so-defined bracket turns the space Ker#x into a Lie algebra. Furthermore, if there 
is a Lie groupoid G associated with the algebroid A, then this algebra is the Lie algebra 
of the isotropy group Gx

x .

Definition 4.14. The algebra Ker#x is called the isotropy algebra at the point x.

Further, we define the isotropy representation of a Lie groupoid. Let G ⇒ B be 
a Lie groupoid, and let g ∈ G. Let also x := src(g), y := trg(g). Then we have a 
group homomorphism Φg : Gx

x → Gy
y given by Φg(h) := ghg−1, and the corresponding 

homomorphism of Lie algebras

Adg : Ker#x → Ker#y ,

where # is the anchor map for the algebroid A corresponding to the groupoid G. The 
collection of operators {Adg | g ∈ G} defines a representation of the Lie groupoid G on 
the corresponding bundle of isotropy algebras {Ker#x | x ∈ B} (the latter is indeed a 
vector bundle provided that the Lie algebroid A is transitive, or, more generally, if the 
anchor map has constant rank). This representation is called the isotropy representation
of a Lie groupoid. It generalizes the notion of the adjoint representation of a Lie group.

Now, recall that one can use the adjoint representation of a group to define the 
bracket in the corresponding Lie algebra. Likewise, the isotropy representation of a Lie 
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groupoid G can be used to define the bracket [ζ, η] of sections ζ, η of the corresponding 
Lie algebroid A, provided that one has #η = 0. Namely, one has the following result.

Proposition 4.15. Let G ⇒ B be a Lie groupoid, and let A → B be the corresponding 
algebroid. Let also ζ, η be sections of A. Further, assume that η belongs to the isotropy 
algebra at every point: #η = 0. Let gt be any smooth curve in a fixed source fiber Gx ⊂ G
such that g0 = idx, and the tangent vector to gt at idx is ζ(x). Then

[ζ, η](x) = d

dt

∣∣∣∣
t=0

Ad−1
gt (η(trg(gt))) . (7)

Remark 4.16. We have Ad−1
gt (η(trg(gt))) ∈ Ker#x for every t, so the derivative in (7) is 

a well-defined element of Ker#x.
When G is a Lie group G, the condition #η = 0 becomes trivial, while formula (7)

becomes the relation ad = −d(Ad) between the adjoint representations of G and the 
adjoint representation of the corresponding Lie algebra g. The minus sign is due to the 
fact that we have defined the Lie bracket using right-invariant vector fields instead of 
left-invariant ones.

4.3. Lie algebroids and Poisson vector bundles

Recall that the dual space g∗ of any Lie algebra g carries a natural linear Poisson 
structure (by definition, a Poisson structure on a vector space is linear if the Poisson 
bracket of two linear functions is again a linear function). Conversely, given a vector 
space V with a linear Poisson structure, its dual space V ∗ has a natural Lie algebra 
structure. This duality between Lie algebras and “Poisson vector spaces” extends to the 
vector bundles setting. The corresponding dual objects are Lie algebroids and Poisson 
vector bundles.

Definition 4.17. A Poisson vector bundle E → B is a vector bundle whose total space 
E is endowed with a fiberwise linear Poisson structure, that is a Poisson structure such 
that the bracket of any two fiberwise linear functions is again a fiberwise linear function.

Remark 4.18. It also follows from this definition and the Leibniz rule for the Poisson 
bracket that the bracket of a fiberwise linear function with a fiberwise constant function 
is a fiberwise constant function, while the brackets of fiberwise constant functions vanish.

Example 4.19. The two basic examples of Poisson vector bundles are a vector space 
endowed with a linear Poisson structure (which is a Poisson vector bundle over a point), 
and the cotangent bundle of a manifold. These Poisson vector bundles are dual to Lie 
algebroids of Examples 4.11(a) and 4.11(b) respectively.

For general Lie algebroids, one has the following result.
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Proposition 4.20. The dual bundle A∗ → B of any Lie algebroid A → B has a natural 
structure of a Poisson vector bundle. The Poisson structure on A∗ is uniquely determined 
by requiring that for arbitrary fiberwise linear functions ζ, η and an arbitrary fiberwise 
constant function f , one has

{ζ, η} := [ζ, η] , {ζ, f} := #ζ · f . (8)

Here we identify fiberwise linear functions on A∗ with sections of A, and fiberwise con-
stant functions on A∗ with functions on the base B.

Conversely, given a Poisson vector bundle, its dual has a natural Lie algebroid struc-
ture. The bracket of sections and the anchor are defined by the same formulas (8)
understood as the definitions of the right-hand sides.

In what follows, we will need an explicit formula for the Poisson structure on the dual 
of a Lie algebroid. We first define the Lie algebroid differential:

Definition 4.21. For an arbitrary 1-form ξ on A (i.e., a section of A∗) its algebroid dif-
ferential dAξ is a 2-form on A given on arbitrary ζ, η lying in one fiber of A by the 
formula

dAξ (ζ, η) := −ξ([ζ̂, η̂]) + #ζ · (ξ(η̂)) − #η · (ξ(ζ̂)) ,

where ζ̂, η̂ are arbitrary smooth sections of A extending ζ, η.

Example 4.22. When A = TB is the tangent bundle, dA is the de Rham differential. 
When A is a Lie algebra, considered as an algebroid over a point, dA is the Chevalley–
Eilenberg differential.

Proposition 4.23. [4] Let A be a Lie algebroid. Then, for any ξ ∈ A∗ and for any smooth 
functions f, g ∈ C∞(A∗), one has

{f, g}(ξ) = −dAξ̂(dFξ f, dFξ g) + #dFξ f · (g ◦ ξ̂) − #dFξ g · (f ◦ ξ̂) , (9)

where ξ̂ is an arbitrary section of A∗ extending ξ, and dFξ f , dFξ g are fiberwise differentials 
of f and g at ξ (i.e. differentials restricted to the tangent space of the fiber of ξ ∈ A∗), 
regarded as elements of A.

Remark 4.24. This formula can be used as a definition in the infinite-dimensional case. 
Although for general infinite-dimensional algebroids it is not even clear why this expres-
sion is well-defined, we prove it below by obtaining an explicit formula in the setting of 
diffeomorphism groupoids and vortex sheets.
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Remark 4.25. For a Lie algebroid A of a Lie groupoid G ⇒ B, the Poisson structure on 
the dual bundle can also be defined as follows. Functions on A∗ can be identified with 
right-invariant functions on the source-wise cotangent bundle T ∗

swG :=
⋃

x∈B T ∗Gx. Such 
right-invariant functions form a Poisson subalgebra with respect to the canonical Poisson 
bracket on the cotangent bundle, which gives rise to a Poisson bracket on A∗. In other 
words, the Poisson manifold A∗ is obtained from the Poisson manifold T ∗

swG by means 
of Hamiltonian reduction with respect to the right G-action on T ∗

swG.
Furthermore, in the transitive case, A∗ is simply the quotient of the cotangent bundle 

T ∗Gx of an arbitrary source fiber Gx by the Hamiltonian right action of the vertex group 
Gx
x (cf. Remark 4.10).

4.4. Euler–Arnold equations on Lie algebroids

Let A → B be a (finite- or infinite-dimensional) Lie algebroid, and let I : A → A∗

be an invertible bundle map. (In the infinite-dimensional case one needs to consider the 
smooth dual bundle A∗, similarly to consideration of smooth duals of infinite-dimensional 
Lie algebras, cf. [2]. In the hydrodynamical setting we define this smooth dual in detail 
in Section 6.) We call such I an inertia operator. An inertia operator I defines a metric 
on A given by

〈u, v〉A := 〈I(u), v〉

for any u, v in the same fiber of A. Since the inertia operator I is invertible, we also get 
a dual metric on A∗:

〈ξ1, ξ2〉A∗ := 〈I(ξ1), ξ2〉 = 〈I−1(ξ1), I−1(ξ2)〉A

for any ξ1, ξ2 in the same fiber of A∗. Define also a function H ∈ C∞(A∗) by

H(ξ) := 1
2 〈ξ, ξ〉A

∗ ∀ ξ ∈ A∗.

Definition 4.26. The Hamiltonian equation associated with the Poisson structure on A∗

and the function H is called the groupoid Euler–Arnold equation corresponding to the 
metric 〈 , 〉A.

Example 4.27. When A is a Lie algebra, we obtain the standard notion of an Euler–
Arnold equation on a Lie algebra dual. When A = TB is the tangent bundle of B, the 
Euler–Arnold equation is the geodesic equation for the metric 〈 , 〉A.

Remark 4.28. In the case when the algebroid A is associated with a certain Lie groupoid 
G, solutions of the Euler–Arnold equation can be interpreted as geodesics of a right-
invariant source-wise (i.e. defined only for vectors tangent to source fibers) metric on G. 
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Indeed, the one-to-one correspondence between sections of A and right-invariant vector 
fields on G tangent to source fibers gives rise to a one-to-one correspondence between 
metrics on A and source-wise right-invariant metrics on G. So, given a metric 〈 , 〉A on A, 
we can consider the geodesic flow of the corresponding source-wise right-invariant metric 
〈 , 〉G on G. This geodesic flow can be considered as a dynamical system on the source-
wise cotangent bundle T ∗

swG :=
⋃

x∈B T ∗Gx, and under the Hamiltonian reduction with 
respect to the right G-action (see Remark 4.25), the solutions of this system descend to 
solutions of the above-defined groupoid Euler–Arnold equation.

Furthermore, in the transitive case we have a one-to-one correspondence between 
metrics on A and metrics on any source fiber Gx invariant under the right Gx

x -action, 
while the groupoid Euler–Arnold flow on A∗ can be viewed as the reduction of the 
geodesic flow on Gx by means of the right Gx

x -action.

Further, we show that an Euler–Arnold equation on a transitive algebroid A → B

always gives rise to a certain geodesic flow on the base B. Indeed, let A → B be a Lie 
algebroid. Then, since the anchor map #: A → TB is an algebroid morphism (i.e., it 
preserves the bracket and the anchor), the dual map #∗ : T ∗B → A∗ is Poisson. (In the 
infinite-dimensional case, one needs to define T ∗B in such a way that its image under 
#∗ belongs to the regular dual A∗.) Note that if, moreover, the algebroid A is transitive, 
then #∗(T ∗B) is a symplectic leaf in A∗. Indeed, if A is transitive, then the Poisson map 
#∗ is injective, while the image of an injective Poisson map of a symplectic manifold is 
always symplectic.

Proposition 4.29. (cf. Proposition 3.2) Let A → B be a transitive Lie algebroid, and let 
〈 , 〉A be a positive-definite metric on A for an invertible inertia operator I : A → A∗. 
Assume also3 that for this metric 〈 , 〉A there is an orthogonal decomposition A = Ker# ⊕
(Ker#)⊥. Then the following is true:

1. The pullback of the groupoid Euler–Arnold flow corresponding to the metric 〈 , 〉A from 
the symplectic leaf #∗(T ∗B) to T ∗B is the geodesic flow for a certain metric 〈 , 〉B
on B. Explicitly, for any x ∈ B and any ζ, η ∈ TxB, the metric 〈 , 〉B reads

〈ζ, η〉B = 〈#−1(ζ),#−1(η)〉A , (10)

where #−1 : TB → (Ker#)⊥ is the inverse for the restriction of the anchor map to 
(Ker#)⊥.

2. The anchor map #: (A, 〈 , 〉A) → (TB, 〈 , 〉B) is a Riemannian submersion of vector 
bundles, meaning that its restriction #|(Ker#)⊥ : ((Ker#)⊥, 〈 , 〉A) → (TB, 〈 , 〉B) is an 
isometry.

3 Note that this property is automatic in the finite-dimensional case.
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3. Assume, in addition, that the algebroid A corresponds to a certain transitive groupoid 
G. Then, for every x ∈ B, the target mapping trg : (Gx, 〈 , 〉G) → (B, 〈 , 〉B) is a Rie-
mannian submersion. (Here the metric 〈 , 〉G on Gx is defined using the identification 
between metrics on A and right-invariant source-wise metrics on G, see Remark 4.28.)

Proof. A straightforward computation shows that the metric on T ∗B dual to (10) is the 
pull-back of the metric 〈 , 〉 on A∗ by the map #∗. But this means that the Hamiltonian of 
the geodesic flow for the metric 〈 , 〉B is the pull-back of the Euler–Arnold Hamiltonian, 
and, since the mapping #∗ is Poisson, the same is true for the flows. This proves the first 
statement. Further, the second statement follows directly from formula (10), while the 
third statement follows from the second one and right-invariance. Thus, the proposition 
is proved. �
Remark 4.30. Another approach to the proof is the following. The source fiber Gx is a 
total space of a principal Gx

x bundle over B, with Gx
x acting on the fiber Gx by multi-

plication on the right. So, the proof follows from the symplectic reduction outlined in 
Remark 3.5 combined with Remark 4.28.

Example 4.31. Let M be a Riemannian manifold. Consider the natural transitive action 
of its diffeomorphisms group Diff(M) on the space Dens(M) of densities on M of unit 
total mass, and let Diff(M) �Dens(M) be the corresponding action groupoid (see Exam-
ple 4.2(c)). Define a metric on the corresponding action algebroid Vect(M) � Dens(M)
by setting

〈u, v〉L2 :=
∫
M

(u, v)μ

for u, v lying in the fiber of Vect(M) �Dens(M) over μ ∈ Dens(M). (Recall that the fibers 
of Vect(M) �Dens(M) are identified with the Lie algebra Vect(M), see Example 4.11(c).) 
Then, according to Remark 4.28, for any μ ∈ Dens(M), there is a corresponding metric 
on the source fiber (Diff(M) � Dens(M))μ = Diff(M) invariant under the right action 
of the isotropy group (Diff(M) � Dens(M))μμ = SDiff(M) = {φ ∈ Diff(M) | φ∗μ = μ}. 
This metric is exactly (6). Thus, Proposition 3.2 is a special case of Proposition 4.29.

5. Discontinuous calculus

5.1. Basic definitions and properties

Let M be a compact connected oriented manifold without boundary endowed with a 
volume form μ, and let Γ ⊂ M be a smooth embedded hypersurface splitting M in two 
parts, D+

Γ and D−
Γ . In this section we define various spaces of tensor fields discontinuous 

across Γ. All such tensor fields will be assumed to be of the form χ+
Γ ξ

+ + χ+
Γ ξ

−, where 
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χ±
Γ are characteristic functions of the domains D±

Γ , and the fields ξ± are C∞-smooth in 
D±

Γ up to the boundary. We introduce the following spaces:

DC∞(M,Γ) := {χ+
Γ f

+ + χ−
Γ f

− | f± ∈ C∞(D±
Γ )} (discontinuous functions),

DVect(M,Γ) := {χ+
Γu

+ + χ−
Γ u

− | u± ∈ Vect(D±
Γ )} (discontinuous vector fields),

DΩ1(M,Γ) := {χ+
Γα

+ + χ−
Γα

− | α± ∈ Ω1(D±
Γ )} (discontinuous 1-forms).

We also introduce the subspace of divergence-free discontinuous vector fields

DSVect(M,Γ) := {χ+
Γu

+ + χ−
Γ u

− ∈ DVect(M,Γ) | div u± = 0 ,

u+|Γ − u−|Γ is tangent to Γ}

and the subspace of exact discontinuous 1-forms

DΩ1
ex(M,Γ) := {χ+

Γ df
+ + χ−

Γ df
− | f+|Γ = f−|Γ} .

Remark 5.1. One can show that the space DΩ1
ex(M, Γ) consists of precisely those 1-forms 

α ∈ DΩ1(M, Γ) which are exact as de Rham currents on M , i.e. those currents which 
have vanishing pairing with smooth closed (n −1)-forms on M . (Equivalently, this space 
is the L2-closure of exact forms inside DΩ1(M, Γ) for any Riemannian metric on M .) In 
particular, the (n −1)-current α = χ+

Γ df
+ +χ−

Γ df
−, where f+|Γ = f−|Γ, is the de Rham 

differential of the n-current f = χ+
Γ f

+ + χ−
Γ f

−.
Similarly, the space DSVect(M, Γ) consists of those fields which have vanishing pair-

ing with smooth exact 1-forms on M , i.e., those vector fields v for which ivμ is a closed 
1-current. (These are precisely those vector fields v ∈ DVect(M, Γ) which are divergence-
free in a weak sense, see Corollary 5.6.)

In the presence of a metric on M , we also introduce the dual versions of the above 
subspaces:

DΩ1
cc(M,Γ) := {u� | u ∈ DSVect(M)Γ}

= {χ+
Γα

+ + χ−
Γα

− | d∗α± = 0 , α+(ν) = α−(ν)} ,

DGrad(M,Γ) := {α� | α ∈ DΩ1
ex(M,Γ)}

= {χ+
Γ∇f+ + χ−

Γ∇f− | f+|Γ = f−|Γ} .

Here d∗ is the adjoint of the de Rham d operator, and ν is the unit normal field on Γ.
Further, we define differential operations on discontinuous fields in the following way. 

Let D be a differential operator on M acting on tensor fields of certain type (functions, 
vector fields, or 1-forms). Let also ξ = χ+

Γ ξ
+ +χ−

Γ ξ
− be such a tensor field discontinuous 

across Γ. Then we define the regularized version DR of the operator D by setting
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DRξ := χ+
ΓDξ+ + χ−

ΓDξ−.

For example, the regularized differential of a discontinuous form χ+
Γα

+ + χ−
Γα

− ∈
DΩ1(M, Γ) is

dR(χ+
Γα

+ + χ−
Γα

−) := χ+
Γ dα

+ + χ−
Γ dα

−.

(Compare this with the actual differential d(χ+
Γα

+ +χ−
Γα

−) = dR(χ+
Γα

+ +χ−
Γα

−) +δΓ∧
(α+−α−) containing the “singular part” as well.) In a similar way, we define regularized 
differential operators taking several arguments. For example, for discontinuous vector 
fields χ+

Γu
+ + χ−

Γ u
−, χ+

Γ v
+ + χ−

Γ v
− ∈ DVect(M, Γ), we have

[χ+
Γu

+ + χ−
Γ u

−, χ+
Γ v

+ + χ−
Γ v

−]R := χ+
Γ [u+, v+] + χ−

Γ [u−, v−] .

(One should distinguish this bracket from the actual Lie bracket of discontinuous vector 
fields, which is a distribution.)

Similarly, for any tensor field ξt = χ+
Γt
ξ+
t +χ−

Γt
ξ−t depending smoothly on a parameter 

t and discontinuous across a t-dependent hypersurface Γt we define

∂R
t ξt := χ+

Γt
∂tξ

+
t + χ−

Γt
∂tξ

−
t .

Below we will need the following two useful formulas for operations with discontinuous 
objects. For f = χ+

Γ f
+ + χ−

Γ f
− ∈ DC∞(M, Γ), let jump(f) := f+|Γ − f−|Γ.

Lemma 5.2. Let Γt ∈ VS(M) be a family of hypersurfaces parametrized by t ∈ R, and let 
ft ∈ DC∞(M, Γt) be a smooth family of functions discontinuous across Γt. Then

d

dt

∫
M

ftμ =
∫
M

dRft
dt

μ +
∫
Γt

jump(ft)
dΓt

dt
.

Remark 5.3. Since Γt is a family of unparametrized hypersurfaces, the derivative dΓt/dt

is a section of the normal bundle NΓ := (TM)|Γ / TΓ of Γ, which can be identified, by 
means of the volume form μ, with the canonical bundle (see Lemma 6.9 below).

Proof of Lemma 5.2. It follows from

d

dt

∫
D±

Γt

ftμ =
∫

D±
Γt

df±
t

dt
μ +

∫
∂D±

Γt

f±
t

d

dt

(
∂D±

Γt

)
,

where ∂D±
Γt

= ±Γt. �
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Lemma 5.4. Let f ∈ DC∞(M, Γ), and let v ∈ DSVect(M, Γ). Then∫
M

(
LR
v f

)
μ =

∫
Γ

jump(f) ivμ .

(Notice that since v ∈ DSVect(M, Γ), we have (iv+μ)|Γ = (iv−μ)|Γ, so the restriction of 
ivμ to Γ is well-defined.)

Proof. The proof is achieved by writing the left-hand side as the sum of integrals over 
D±

Γ and applying the Stokes formula. �
5.2. Singular Hodge decomposition

In this section we present the Hodge decomposition in the setting of discontinuous 
forms and vector fields.

Proposition 5.5 (Singular Hodge decomposition). There exist orthogonal (with respect to 
the L2-inner product) decompositions

DΩ1(M,Γ) = DΩ1
cc(M,Γ) ⊕L2 DΩ1

ex(M,Γ) (11)

and

DVect(M,Γ) = DSVect(M,Γ) ⊕L2 DGrad(M,Γ) . (12)

Proof. These decompositions are metric-dual to each other, so it suffices to prove (12). 
The orthogonality follows from a straightforward application of the Stokes formula and 
divergence-free condition. Indeed, for v ∈ DSVect(M, Γ) and w = χ+

Γ∇f+ + χ−
Γ∇f− ∈

DGrad(M, Γ) the pairing 〈v, w〉L2 reduces to 
∫
Γ(f+iv+μ − f−iv−μ), which vanishes due 

to relations (iv+μ)|Γ = (iv−μ)|Γ and f+ = f− on Γ.
Now we need to show that the sum of DSVect(M, Γ) and DGrad(M, Γ) is the whole 

space DVect(M, Γ). Let u = χ+
Γu

+ + χ−
Γ u

− ∈ DVect(M, Γ). Using Hodge decomposition 
for manifolds with boundary, write u± as u± = v± + ∇f±, where the vector fields 
v± ∈ Vect(D±

Γ ) are divergence-free and tangent to Γ, while f± ∈ C∞(D±
Γ ) are functions. 

Further, let g := f+|Γ − f−|Γ ∈ C∞(Γ). Then, by Theorem A.2 from Appendix A, there 
exist harmonic functions h± ∈ C∞(D±

Γ ) such that the normal derivatives of h+ and h−

at Γ coincide, while h+|Γ − h−|Γ = g. (The function h = χ+
Γh

+ + χ−
Γ h

− is known as a 
double layer potential.) Using these functions, write u as

u = (χ+
Γ (v+ + ∇h+) + χ−

Γ (v− + ∇h−)) + (χ+
Γ (∇f+ −∇h+) + χ−

Γ (∇f− −∇h−)) .

Then the first bracket is in DSVect(M, Γ), while the second bracket is in DGrad(M, Γ). 
Thus, the proposition is proved. �
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Corollary 5.6.

1. The space DSVect(M, Γ) is precisely the L2-closure of SVect(M) inside DVect(M, Γ).
2. The space DGrad(M, Γ) is the L2-closure of Grad(M) inside DVect(M, Γ).

Proof. We prove i) only, as the other one is similar. We have SVect(M) = Grad(M)⊥
(where the bar stands for the L2-closure and ⊥ stands for the orthogonal complement in 
L2), so the inclusion DSVect(M, Γ) ⊂ SVect(M) directly follows from Proposition 5.5. 
Therefore, it is suffices to show that SVect(M) ∩ DVect(M, Γ) ⊂ DSVect(M, Γ). To 
that end, we first note that Grad(M) = SVect(M)⊥, so by Proposition 5.5 we have 
Grad(M) ⊃ DGrad(M, Γ). Therefore, given u ∈ SVect(M) = Grad(M)⊥, we have that 
u ∈ Grad(M, Γ)⊥. So, if u is also in DVect(M, Γ), then u ∈ DSVect(M, Γ) by Proposi-
tion 5.5, as desired. �
6. Kinematics of vortex sheets

In this section, M is a compact connected oriented manifold without boundary en-
dowed with a volume form μ.

6.1. The Lie groupoid of discontinuous diffeomorphisms

In this subsection, we define the Lie groupoid DSDiff(M) of volume-preserving diffeo-
morphisms discontinuous along a hypersurface. This groupoid (or, more precisely, any of 
its source fibers) can be viewed as the configuration space of a fluid with an immersed 
vortex sheet.

The base of the groupoid DSDiff(M) is, by definition, the space VS(M) of vortex 
sheets Γ confining diffeomorphic domains of the same total volume (see Section 3.2). 
The elements of DSDiff(M) are volume-preserving diffeomorphisms discontinuous along 
a hypersurface, i.e. quadruples (Γ1, Γ2, φ+, φ−) where Γ1, Γ2 ∈ VS(M), and φ± : D±

Γ1
→

D±
Γ2

are volume preserving diffeomorphisms. Here, as above, D+
Γi
, D−

Γi
are connected 

components of M \ Γi. The source and the target of (Γ1, Γ2, φ+, φ−) are, by definition, 
Γ1 and Γ2 respectively. The multiplication in DSDiff(M) is given by composition of 
discontinuous diffeomorphisms (see Fig. 1):

(Γ2,Γ3, ψ
+, ψ−)(Γ1,Γ2, φ

+, φ−) := (Γ1,Γ3, ψ
+φ+, ψ−φ−) .

Proposition 6.1. DSDiff(M) ⇒ VS(M) is a transitive Lie–Fréchet groupoid.

Proof. Verification of groupoid axioms is straightforward, while transitivity follows from 
the definition of VS(M): for any Γ, ̃Γ ∈ VS(M) there exists a smooth volume-preserving 
diffeomorphism φ ∈ SDiff(M) taking Γ to Γ̃. This diffeomorphism can be regarded as an 
element (Γ, ̃Γ, φ|D+ , φ|D−) ∈ DSDiff(M) with source Γ and target Γ̃.
Γ Γ
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To prove the Lie property, we first show that VS(M) is a Fréchet manifold. It is well 
known that the ambient space Σ(M) of all hypersurfaces in M (with no restriction on 
the volume) is a Fréchet manifold, see, e.g., [9], Example 4.1.7. The corresponding local 
charts are constructed by identifying surfaces close to a given Γ ⊂ Σ(M) with sections 
of the normal bundle NΓ of Γ in the vicinity of the zero section. In the presence of a 
volume form on M , those sections can be identified with top-degree forms on Γ, while the 
identification between the neighborhood of Γ and the neighborhood of the zero section 
in NΓ can be made in such a way that Γ, ̃Γ ⊂ Σ(M) bound the same volume if and only 
if the top-degree form on Γ representing Γ̃ has zero integral over Γ. For such a choice of 
charts on Σ(M), its subset VS(M) is locally described as a closed subspace of top-degree 
forms on Γ with zero mean. Therefore, VS(M) is a Fréchet submanifold of Σ(M).

Further, we show that DSDiff(M) can be endowed with a Fréchet manifold structure 
in such a way that the source and target map are submersions. (Recall that a map 
between Fréchet manifolds is called a submersion if it can be locally represented as the 
projection of a direct product to one of the factors.) Moreover, the manifold structure 
we define has the property that the mapping π : DSDiff(M) → VS(M) × VS(M) given 
by φ �→ (src(φ), trg(φ)) is a fiber bundle. To that end, choose a reference vortex sheet 
Γ0 ∈ VS(M). Then the vertex group π−1(Γ0, Γ0) is the direct product SDiff(D+

Γ0
) ×

SDiff(D+
Γ0

). Each of the factors is a Lie–Fréchet group (see [8]), so π−1(Γ0, Γ0) is a 
Lie–Fréchet group as well. Further, for any Γ ∈ VS(M), there exists a (non-canonical) 
smooth volume-preserving diffeomorphism φΓ ∈ SDiff(M) such that φΓ(Γ0) = Γ. This 
gives rise to bijections

ΦΓ1,Γ2 : π−1(Γ1,Γ2) → π−1(Γ0,Γ0)

ΦΓ1,Γ2(ψ) := φ−1
Γ2

◦ ψ ◦ φΓ1

between fibers of π. Furthermore, for any Γ ∈ VS(M) there exists its neighborhood 
O(Γ) in which the mapping φ	 : O(Γ) → SDiff(M) given by Γ̃ �→ φΓ̃ can be chosen to 
be smooth (cf. [9], Example 4.3.6). Then the corresponding maps ΦΓ1,Γ2 provide local 
identifications

π−1(O(Γ1) ×O(Γ2)) � O(Γ1) ×O(Γ2) × π−1(Γ0,Γ0) .

Covering DSDiff(M) by open sets of the form O(Γ1) ×O(Γ2) ×π−1(Γ0, Γ0), we endow it 
with a Fréchet manifold structure such that π : DSDiff(M) → VS(M) ×VS(M) is a fiber 
bundle. (Note that the transition maps are given by group operations in π−1(Γ0, Γ0) and 
hence smooth.) It follows that the source and target maps are fiber bundles as well, and 
hence submersions.

Finally, notice that with our local trivializations the groupoid operations (multiplica-
tion and inversion) in DSDiff(M) boil down to group operations in π−1(Γ0, Γ0), while 
the unit map Γ �→ idΓ reads idΓ = (Γ, Γ, id) ∈ O(Γ) × O(Γ) × π−1(Γ0, Γ0). Therefore, 
DSDiff(M) ⇒ VS(M) is indeed a Lie–Fréchet groupoid, as desired. �
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Remark 6.2. One can also consider the groupoid DSDiff(M) in the category of Hilbert 
manifolds modeled on Sobolev Hs spaces for sufficiently large s, similarly to, e.g., [8] or 
Remark 3.3 in [12].

Remark 6.3. Since DSDiff(M) is a Lie–Fréchet groupoid, it follows that the correspond-
ing algebroid is well-defined as a Fréchet vector bundle over VS(M) with a bracket and 
anchor on smooth sections. We describe this algebroid in detail in the next section.

Remark 6.4. Note that if we impose an additional requirement that the maps φ± in 
the definition of the groupoid DSDiff(M) are restrictions of one and the same smooth 
volume-preserving diffeomorphism φ ∈ SDiff(M), then we obtain the definition of the 
action groupoid SDiff(M) � VS(M) (see Example 4.2(c)) corresponding to the natu-
ral action of SDiff(M) on VS(M). So, the groupoid DSDiff(M) comes with an action 
subgroupoid SDiff(M) �VS(M) of smooth volume-preserving diffeomorphisms. We will 
see below that the groupoid DSDiff(M) inherits some properties of the action groupoid 
SDiff(M) �VS(M). In particular, the brackets in the algebroids corresponding to these 
groupoids look similarly.

6.2. The Lie algebroid of discontinuous vector fields

In this subsection we describe the Lie algebroid DSVect(M) → VS(M) corresponding 
to the Lie groupoid DSDiff(M). This algebroid serves as the space of velocities for a fluid 
with an immersed vortex sheet.

Theorem 6.5. The fibration DSVect(M) → VS(M) can be equipped with the structure of 
a Lie algebroid corresponding to the groupoid DSDiff(M) as follows:

1. The fiber of DSVect(M) over Γ ∈ VS(M) is the space DSVect(M, Γ) which consists 
of discontinuous vector fields on M of the form u = χ+

Γu
+ + χ−

Γ u
−, where u± ∈

SVect(D±
Γ ) are such that u+|Γ − u−|Γ is tangent to Γ (in other words, the normal 

component of u on Γ is continuous, see Section 5.1).
2. The anchor map #: DSVect(M, Γ) → TΓVS(M) is given by the projection of u+|Γ

or, equivalently, u−|Γ to the normal bundle NΓ := (TM)|Γ / TΓ (these projections 
coincide by the previous statement).

3. Let U, V be sections of DSVect(M). Then their algebroid bracket is

[U, V ](Γ) = [U(Γ), V (Γ)]R + #U(Γ) · V − #V (Γ) · U . (13)

Remark 6.6. The derivative #U(Γ) · V is a (discontinuous) vector field defined by

#U(Γ) · V := dR
∣∣∣∣ V (Γt) ,
dt t=0
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where Γt is any smooth curve in VS(M) with Γ0 = Γ and the tangent vector at Γ given 
by #U(Γ). The derivative #U(Γ) · V does not have to lie in DSVect(M, Γ), but belongs 
to the bigger space

DSVect′(M,Γ) := {χ+
Γu

+ + χ−
Γ u

− | u± ∈ SVect(D±
Γ )}

of divergence-free vector fields with no conditions on Γ. (The normal component of 
#U(Γ) ·V at Γ does not have to be continuous.) The so-defined derivative can be viewed 
as a covariant derivative ∇#UV in the extended bundle DSVect′(M) → VS(M) whose 
fiber over Γ ∈ VS(M) is the space DSVect′(M, Γ), cf. [9], Example 4.5.4. (We use the 
notation #U(Γ) · V to emphasize its relation to the formula from Example 4.11(c).)

Remark 6.7. Note that the first term on the right-hand side of (13) is not an element 
of DSVect(M, Γ). Indeed, for two vector fields whose normal components are continuous 
across Γ, their (regularized) Lie bracket [ , ]R does not necessarily have this property. 
However, the last two terms also have discontinuous normal components that turn out 
to compensate the discontinuity of the first term, as we will see below.

Remark 6.8. The Lie algebroid DSVect(M) contains a subalgebroid SVect(M) �VS(M)
of smooth divergence-free vector fields, corresponding to the subgroupoid SDiff(M) �
VS(M) of smooth volume-preserving diffeomorphisms (see Remark 6.4). Note that since 
SDiff(M) � VS(M) is an action groupoid, SVect(M) � VS(M) is an action algebroid, 
and the corresponding bracket automatically has form (13) (cf. Example 4.11(c)). The 
non-trivial part of the third statement of Theorem 6.5 is that the bracket has the same 
form on the whole Lie algebroid DSVect(M), despite the fact that DSVect(M) is not an 
action algebroid. (In particular, the fibers of DSVect(M) are not closed under the Lie 
bracket of vector fields (see Remark 6.7) and hence do not have any natural Lie algebra 
structure.)

Proof of Theorem 6.5. We begin with the first statement. By definition, the fiber of 
DSVect(M) over Γ consists of tangent vectors at idΓ ∈ DSDiff(M) to curves of the form 
(Γ, Γt, φ

+
t , φ

−
t ), where Γ0 = Γ and φ±

0 = id. The tangent vector to such a curve is a pair 
of divergence-free vector fields

u± = d

dt

∣∣∣∣
t=0

φ±
t ∈ SVect(D±

Γ ) .

Also note that, by definition, both φ+
t and φ−

t map the surface Γ to the same surface Γt. 
In other words, we have

φ+
t |Γ = φ−

t |Γ ◦ ψt , (14)

where ψt ∈ Diff(Γ) is a diffeomorphism of the sheet Γ, and ψ0 = id. Differentiating (14)
with respect to t at t = 0, we get
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u+|Γ = u−|Γ + d

dt

∣∣∣∣
t=0

ψt ,

which means that u+|Γ − u−|Γ is tangent to Γ, as desired.
Conversely, given any pair of divergence-free vector fields u± ∈ SVect(D±

Γ ) such that 
u+|Γ−u−|Γ is tangent to Γ, one can construct a curve φt in the source fiber DSDiff(M)Γ
whose tangent vector at idΓ coincides with χ+

Γu
+ + χ−

Γ u
−. So, the fiber of DSVect(M)

over VS(M) is indeed the space DSVect(M, Γ).
To prove the second statement we need the following.

Lemma 6.9. The tangent space TΓVS(M) is the space of sections of the normal bundle 
NΓ (equivalently, the space of top-degree forms on Γ) having zero mean.

The proof of this lemma is achieved by differentiating a family Γt at t = 0. Its motion 
is determined by the normal vector field, while the zero mean condition follows from the 
conservation of volumes of D±

Γ (cf. [9], Example 4.5.5). The equivalence between sections 
of NΓ and top-degree forms of Γ is provided by the map v �→ (ivμ)|Γ.

Now, we compute the anchor map. Let u = χ+
Γu

+ + χ−
Γ u

− ∈ DSVect(M)Γ. Consider 
a curve φt = (Γ, Γt, φ

+
t , φ

−
t ) whose tangent vector at idΓ is u. Then, by definition of the 

anchor map for the algebroid of a Lie groupoid, we have

#u = d

dt

∣∣∣∣
t=0

trg(φt) = d

dt

∣∣∣∣
t=0

Γt .

Note that, as an unparametrized surface, Γt coincides with φ+
t (Γ), so the latter derivative 

is equal to the normal component of

d

dt

∣∣∣∣
t=0

φ+
t (Γ) = u+,

which means that #u is exactly the normal component of u+ (equivalently, u−), as 
desired.

Finally, we prove the third statement. First, notice that any section U of DSVect(M)
can be written (nonuniquely) as U = Usm +Utan, where Usm is a section of SVect(M) �
VS(M) (i.e., for every Γ ∈ VS(M) the vector field Usm(Γ) is divergence-free and smooth), 
while Utan satisfies #Utan = 0 (i.e., for every Γ ∈ VS(M) the vector field Utan(Γ) is 
tangent to Γ). (The existence of Usm is equivalent to the ability to trace any infinitesimal 
motion of Γ by a smooth divergence-free field in M .) Therefore, since both the left- and 
the right-hand sides of (13) are skew-symmetric and additive in U and V , it suffices to 
prove this formula in the following two cases:

1. U, V are sections of SVect(M) � VS(M);
2. #V = 0.
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The first case follows from SVect(M) � VS(M) being an action algebroid (see Re-
mark 6.8), so we only need to consider the case #V = 0. To deal with this case, we 
use the following lemma.

Lemma 6.10. For the Lie groupoid DSDiff(M), the adjoint operator Adφ : Ker#src(φ) →
Ker#trg(φ) is given by pushforward: Adφu = φ∗u .

Proof. The proof follows the lines of that for the corresponding statement about the 
group SDiff(M), see, e.g., Theorem 3.11 of [2], as the adjoint action is a volume-preserving 
change of coordinates on D±

Γ . �
Now, let φt be any smooth curve in the source fiber DSDiff(M)Γ such that φ0 = idΓ, 

and the tangent vector to φt at idΓ is U(Γ). Then, using formula (7) and Lemma 6.10, 
we have

[U, V ](Γ) = d

dt

∣∣∣∣
t=0

φ∗
t (V (trg(φt))) = [ d

dt

∣∣∣∣
t=0

φt , V (trg(φ0))]R + dR

dt

∣∣∣∣
t=0

V (trg(φt))

= [U(Γ), V (Γ)]R + #U(Γ) · V ,

which, due to the condition #V = 0, is equivalent to (13). Thus, the theorem is 
proved. �
Remark 6.11. In what follows, we identify the normal bundle NΓ with the canonical 
bundle Λn−1(T ∗Γ), where n := dimM (i.e. n − 1 := dim Γ). With this identification, the 
tangent space TΓVS(M) is the space Ωn−1

0 (Γ) of top-degree forms on Γ with zero mean, 
while the anchor map is given by

#u = (iuμ)|Γ = (iu+μ)|Γ = (iu−μ)|Γ ∀u ∈ DSVect(M,Γ) .

Corollary 6.12. The isotropy algebra Ker#Γ for the Lie algebroid DSVect(M) consists of 
vector fields of the form u = χ+

Γu
+ + χ−

Γ u
−, where u± ∈ SVect(D±

Γ ) are tangent to Γ. 
The Lie bracket on Ker#Γ is the regularized Lie bracket of vector fields.

Notice that Ker#Γ is exactly the Lie algebra of the vertex group SDiff(D+
Γ ) ×

SDiff(D−
Γ ) (cf. Proposition 4.13).

6.3. The tangent space to the algebroid of discontinuous fields

Here we describe the tangent space to DSVect(M). Since DSVect(M) is the space of 
possible velocities for a fluid with a vortex sheet, its tangent space is, in a sense, the 
space of possible accelerations. In what follows we use this description to show that the 
velocity uniquely determines the pressure terms p± in (3).
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Definition 6.13. Let ut = χ+
Γt
u+
t + χ−

Γt
u−
t ∈ DSVect(M) be a smooth curve in the space 

DSVect(M). Then the tangent vector to ut at t = t0 is a pair (v, ξ) ∈ DSVect′(M, Γt0) ⊕
TΓt0

VS(M) defined by

v := dR

dt

∣∣∣∣
t=t0

ut , ξ := d

dt

∣∣∣∣
t=t0

Γt . (15)

Note that the v-component of the tangent vector is the covariant derivative of ut along 
the curve Γt, where we regard ut as a section of the algebroid over Γt, cf. Remark 6.6.

Let jump‖ : DSVect(M, Γ) → Vect(Γ) be the map assigning to each u ∈ DSVect(M, Γ)
the jump of its tangential component at Γ:

jump‖(χ+
Γu

+ + χ−
Γ u

−) := (u+ − u−)|Γ .

Let also jump⊥ : DSVect′(M, Γ) → TΓVS(M) � Ωn−1
0 (Γ) be the map assigning to each 

v ∈ DSVect′(M, Γ) the jump of its normal component at Γ:

jump⊥(χ+
Γ v

+ + χ−
Γ v

−) := (i(v+−v−)μ)|Γ .

Proposition 6.14. The (Fréchet) tangent space to DSVect(M) at a point u ∈ DSVect(M,

Γ) is a vector subspace of DSVect′(M, Γ) ⊕TΓVS(M) consisting of pairs (v, ξ) satisfying

jump⊥(v) = Ljump‖(u)ξ . (16)

Here ξ is understood as an (n − 1)-form with zero mean on Γ, cf. Remark 6.11.

Remark 6.15. Recall that the bundle π : DSVect′(M) → VS(M) is equipped with a 
natural connection, see Remark 6.6. As any connection in a vector bundle, it defines a 
splitting

TuDSVect′(M) � DSVect′(M,π(u)) ⊕ Tπ(u)VS(M) .

In Proposition 6.14 we described the subspace TuDSVect(M) ⊂ TuDSVect′(M) in terms 
of this splitting.

Proof of Proposition 6.14. Let ut = χ+
Γt
u+
t + χ−

Γt
u−
t ∈ DSVect(M) be a curve with 

u0 = u. We prove that its tangent vector (v, σ) at u, given by (15), satisfies (16). Let φt

be a curve in SDiff(M) such that φ0 = id and (φt)∗Γ = Γt. Then the vector field φ∗
tut

belongs to DSVect(M, Γ) for every t, and thus so does its time derivative

d

dt

∣∣∣∣
t=0

(φ∗
tut) = [w, u]R + v , (17)
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where w := ∂tφt at t = 0. Applying jump⊥ to both sides of (17) and using that the 
left-hand side is in DSVect(M, Γ), we get

jump⊥(v) = jump⊥[u,w]R = (i[u+,w]μ)|Γ − (i[u−,w]μ)|Γ
= ([Lu+ , iw]μ)|Γ − ([Lu− , iw]μ)|Γ = Ljump‖(u)((iwμ)|Γ) ,

(18)

where we used the standard formula i[u,w] = [Lu, iw], and divergence-free conditions 
Lu+μ = Lu−μ = 0. Now it suffices to notice that for t = 0 we have ∂tΓt = (iwμ)|Γ, so 
(18) is equivalent to (16).

Conversely, given any pair (v, ξ) satisfying (16), the curve

ut := exp(tw)∗(u + t(v + [w, u]R)) ,

where w ∈ SVect(M) is any divergence-free vector field on M whose normal component 
at Γ is ξ, has (v, ξ) as its tangent vector at u. Thus, the space of tangent vectors to 
DSVect(M) at u coincides with the solution space of (16), as desired. �
6.4. The dual algebroid and its tangent space

In this subsection, we describe the dual of the Lie algebroid DSVect(M). This space 
can be viewed as the space of momenta (or the space of circulations) for a fluid with an 
immersed vortex sheet.

As the dual of DSVect(M), we consider the “smooth dual bundle” defined as follows. 
Let

DΩ1(M) :=
⋃

Γ∈VS(M)
DΩ1(M,Γ) .

This is a vector bundle over VS(M). Similarly, let

DΩ1
ex(M) :=

⋃
Γ∈VS(M)

DΩ1
ex(M,Γ) .

This is a subbundle in DΩ1(M).

Definition 6.16. The smooth dual bundle DSVect(M)∗ is the quotient

DSVect(M)∗ := DΩ1(M) /DΩ1
ex(M) .

The pairing between a coset [α] ∈ DSVect(M, Γ)∗ = DΩ1(M, Γ) / DΩ1
ex(M, Γ) and a 

vector field u ∈ DSVect(M)Γ is given by the formula

〈[α], u〉 :=
∫
M

(iuα)μ ,

where α is any representative of the coset [α].
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The value of 〈[α], u〉 does not depend on the choice of the representative α ∈ [α]
because the pairing between DΩ1

ex(M, Γ) and DSVect(M, Γ) vanishes by Proposition 5.5. 
So, any coset [α] ∈ DΩ1(M, Γ) / DΩ1

ex(M, Γ) gives rise to a well-defined linear functional 
on the space DSVect(M, Γ). For [α] �= 0 this functional is non-zero by the following 
proposition.

Proposition 6.17. For any choice of a Riemannian metric on M , any coset [α] ∈
DΩ1(M, Γ) / DΩ1

ex(M, Γ) has a unique co-closed representative α ∈ DΩ1
cc(M, Γ).

Proof. This immediately follows from decomposition (11). �
Corollary 6.18. Any non-zero coset [α] ∈ DΩ1(M, Γ) / DΩ1

ex(M, Γ) defines a non-zero 
functional on the space DSVect(M, Γ).

Proof. Indeed, let [α] ∈ DΩ1(M, Γ) / DΩ1
ex(M, Γ) be non-zero, and let αcc ∈ [α] be the 

co-closed representative (with respect to arbitrary Riemannian metric on M compatible 
with the volume form μ). Then α#

cc ∈ DSVect(M, Γ), and 〈[α], α#
cc〉 = 〈α#

cc, α
#
cc〉L2 > 0, 

so the functional defined by [α] is non-zero. �
It follows that the smooth dual DSVect(M, Γ)∗ = DΩ1(M, Γ) / DΩ1

ex(M, Γ) is indeed a 
subspace of the (continuous) dual space to DSVect(M, Γ). (Another important property 
is that this subspace “separates points”, i.e. for any non-zero u ∈ DSVect(M, Γ) there 
exists [α] ∈ DSVect(M, Γ)∗ such that 〈[α], u〉 �= 0. This is equivalent to saying that 
DSVect(M, Γ) injects into the dual of its smooth dual, which is needed for the Poisson 
bracket on DSVect(M, Γ)∗ to be well-defined.)

In the next section we present a Poisson bracket on the dual bundle DSVect(M)∗. For 
this we describe the tangent and cotangent spaces to this dual. Start with the tangent 
space.

Definition 6.19. Let αt = χ+
Γt
α+
t + χ−

Γt
α−
t ∈ DΩ1(M) be a smooth curve. Then the 

tangent vector to αt at t = t0 is the pair

dR

dt

∣∣∣∣
t=t0

αt ∈ DΩ1(M,Γt0) ,
d

dt

∣∣∣∣
t=t0

Γt ∈ TΓt0
VS(M)

(cf. Definition 6.13).

Note that two curves [α]t, [β]t in DSVect(M)∗ are tangent to each other at t = t0 if 
and only if they admit lifts to DΩ1(M) with the same tangent vector at t = t0.

Proposition 6.20. Let [α]t be a curve in DSVect(M)∗. Consider an arbitrary lift αt of 
this curve to DΩ1(M). Then the coset of ∂R

t αt in DΩ1(M) / DΩ1
ex(M) at t = t0 depends 

only on αt0 , not on the whole lift αt.
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Proof. Without loss of generality assume that t0 = 0. Let αt, α̃t be two different lifts 
starting at α0. Then, for the 1-form γt := α̃t−αt, we have γt ∈ DΩ1

ex(M, Γt) and γ0 = 0. 
Let φt be any smooth curve in Diff(M) such that φ0 = id and (φt)∗Γ0 = Γt. Then

d

dt

∣∣∣∣
t=0

φ∗
t γt = dR

dt

∣∣∣∣
t=0

γt = dR

dt

∣∣∣∣
t=0

α̃t −
dR

dt

∣∣∣∣
t=0

αt .

(Here we used that φ0 = id and γ0 = 0.) Furthermore, we have φ∗
tγt ∈ DΩ1

ex(M, Γ0), so 
the same holds for its time derivative, and the result follows. �
Corollary 6.21. Let [α] ∈ DSVect(M, Γ)∗. Then any choice of α ∈ DΩ1(M, Γ) represent-
ing the coset [α] gives rise to a splitting

T[α]DSVect(M)∗ � DSVect(M,Γ)∗ ⊕ TΓVS(M) , (19)

depending on α.

Proof. Let [α]t be a curve in DSVect(M)∗ lifting the curve Γt in VS(M) and such that 
[α]0 = α. Then to this curve one can associate a pair

dR

dt

∣∣∣∣
t=0

[α]t ∈ DSVect(M,Γt)∗,
d

dt

∣∣∣∣
t=0

Γt ∈ TΓVS(M) ,

where

dR

dt
[α]t := [d

Rαt

dt
] ,

and αt is an arbitrary lift of the curve [α]t to DΩ1(M) such that α0 = α. It is easy to 
see that this correspondence gives rise to an isomorphism between T[α]DSVect(M)∗ and 
DSVect(M, Γ)∗ ⊕ TΓVS(M). �
6.5. Poisson bracket on the dual algebroid

In this section we show that formula (9) gives a well-defined Poisson bracket on 
DSVect(M)∗. For this we need to describe the cotangent space to DSVect(M)∗ and 
we start by defining the cotangent space to the base, T ∗

ΓVS(M).

Definition 6.22. The smooth cotangent space T ∗
ΓVS(M) is the space C∞(Γ) / R of func-

tions on Γ modulo constants. The pairing between a coset [f ] ∈ C∞(Γ) / R and a top 
degree form ξ ∈ TΓVS(M) = Ωn−1

0 (Γ) (where n = dimM), which is an element of the 
corresponding tangent space, is given by

〈[f ], ξ〉 :=
∫

fξ .
Γ
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(The right-hand side is independent on the choice of a representative f ∈ [f ] thanks to 
the zero mean condition on ξ.)

Now we define the cotangent space to DSVect(M)∗ by dualizing splitting (19).

Definition 6.23. Let [α] ∈ DSVect(M)∗Γ. Then the smooth cotangent space to DSVect(M)∗
at [α] is

T ∗
[α]DSVect(M)∗ := DSVect(M,Γ) ⊕ T ∗

ΓVS(M) , (20)

where the second summand is the smooth cotangent space. One can see that this de-
fines the same space for any choice of the representative α, although the isomorphism 
T ∗

[α]DSVect(M)∗ � DSVect(M, Γ) ⊕ T ∗
ΓVS(M) depends on the choice of α.

Further, we define the notion of a differentiable function on DSVect(M)∗. Roughly 
speaking, a function is differentiable if it has a differential belonging to the smooth 
cotangent space.

Definition 6.24. A function F : DSVect(M)∗ → R is differentiable if there exists a section 
δF of the smooth cotangent bundle T ∗DSVect(M)∗ such that for any smooth curve [α]t
in DSVect(M)∗ one has

d

dt
(F([αt])) = 〈δF([α]t),

(
∂R
t [α]t, ∂tΓt

)
〉 .

Using splitting (20), we decompose δF ([α]) for [α] ∈ DSVect(M, Γ)∗ into the fiber 
and base parts:

δF([α]) = (δFF([α]), δBF([α])),

where

δFF([α]) ∈ DSVect(M,Γ) , δBF([α]) ∈ T ∗
ΓVS(M) = C∞(Γ) /R .

Theorem 6.25. Let F1, F2 : DSVect(M)∗ → R be differentiable functions. Then their 
Poisson bracket reads

{F1,F2} = P(δF1, δF2) ,

where the value of the Poisson tensor P on two cotangent vectors (v1, [f1]), (v2, [f2]) ∈
T ∗

[α]DSVect(M)∗ = DSVect(M, Γ) ⊕ T ∗
ΓVS(M) at a point [α] ∈ DSVect(M)∗Γ is

P[α] ((v1, [f1]), (v2, [f2])) = −
∫

dRα(v1, v2)μ−
∫

f1iv2μ +
∫

f2iv1μ . (21)

M Γ Γ
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Here α ∈ DΩ1(M, Γ) is the representative of the coset [α] used to define splittings (19), 
(20).

Remark 6.26. Equivalently, this bracket can be written in the form, similar to a Lie–
Poisson bracket with boundary terms:

P[α]((v1, [f1]), (v2, [f2])) =
∫
M

α([v1, v2]R)μ

+
∫
Γ

(jump(iv1α) − f1) iv2μ −
∫
Γ

(jump(iv2α) − f2) iv1μ .

(22)

Proof of Theorem 6.25. Formulas (21) and (22) are equivalent to each other. To see this, 
rewrite the first term in (22) using the formula i[v1,v2] = [Lv1 , iv2 ] and then rewrite the 
integrals of jumps using Lemma 5.4. So, it suffices to derive formula (22).

Formula (9) for the Poisson bracket in the dual of an algebroid combined with for-
mula (13) for the bracket of sections of DSVect(M) gives

{F1,F2}([α]) =

⎛⎝∫
M

α(
[
δFF1([α]), δFF2([α])

]R)μ

⎞⎠ + S12 − S21 , (23)

where Sij is given by

Sij := #Ui(Γ) · (Fj(A)) − #Ui(Γ) · 〈A,Uj〉 +
∫
M

α(#Ui(Γ) · Uj)μ , (24)

the section A of DSVect(M)∗ is an arbitrary extension of [α], and Ui is a section of 
DSVect(M) given by Ui := δFFi(A).

To compute the expression Sij , take any curve Γi(t) ∈ VS(M) such that Γi(0) = Γ, 
and the tangent vector to Γi(t) at Γ is #Ui(Γ). Then

#Ui(Γ) · (Fj(A)) = d

dt

∣∣∣∣
t=0

Fj(A(Γi(t)))

= 〈Uj(Γ), d
R

dt

∣∣∣∣
t=0

A(Γi(t))〉 + 〈δBFj([α]),#Ui(Γ)〉.
(25)

Further, let αi(t) be any curve in DΩ1(M) lifting A(Γi(t)) and such that αi(0) = α. 
Then, using Lemma 5.2, we get

#Ui(Γ) · 〈A,Uj〉 = d
∣∣∣∣ 〈A(Γi(t)), Uj(Γi(t))〉
dt t=0
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= d

dt

∣∣∣∣
t=0

∫
M

(iUj(Γi(t))αi(t))μ

= 〈Uj(Γ), d
R

dt

∣∣∣∣
t=0

A(Γi(t))〉 +
∫
M

α(#Ui(Γ) · Uj)μ

+
∫
Γ

jump(α(δFFj([α])))#Ui(Γ) .

Substituting this, along with (25), into (24), and then plugging the resulting formula for 
Sij into (23), one gets (22), as desired. �
Corollary 6.27. The Hamiltonian operator

P#
[α] : T

∗
[α]DSVect(M)∗ → T[α]DSVect(M)∗

corresponding to the Poisson bracket on DSVect(M)∗ is given by

(v, [f ]) �→ (−[ivdRα] − #∗[f ],#v) , (26)

where #∗ : T ∗VS(M) → DSVect(M)∗ is the dual of the anchor map, explicitly given by

#∗[f ] :=
{
dRh | h ∈ DC∞(M), jump(h) = f

}
(cf. Proposition 7.6 below).

Proof. By definition, we have

〈(w, [g]),P#
[α](v, [f ])〉 = P[α] ((v, [f ]), (w, [g])) = −

∫
M

dRα(v, w)μ−
∫
Γ

fiwμ +
∫
Γ

givμ .

Take any h ∈ DC∞(M) with jump(h) = f . Then, by Lemma 5.4, we have∫
Γ

fiwμ =
∫
M

(iwdRh)μ ,

so we end up with

〈(w, [g]),P#
[α](v, [f ])〉 =

∫
M

iw(−ivd
Rα− dRh)μ +

∫
Γ

givμ .

The result follows. �
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7. Dynamics of vortex sheets

In this section, M is a compact connected oriented manifold without boundary en-
dowed with a Riemannian metric ( , ) and the corresponding Riemannian volume form μ.

7.1. Evolution of vortex sheets as an algebroid Euler–Arnold equation

The L2 product of vector fields associated with the metric ( , ) on M defines a metric 
〈 , 〉L2 on the Lie algebroid DSVect(M).

Proposition 7.1.

1. The inertia operator I associated with the L2-metric 〈 , 〉L2 on DSVect(M) takes values 
in the smooth dual DSVect(M)∗. For u ∈ DSVect(M, Γ), one has I(u) = [u�], where 
u� denotes the 1-form dual to u with respect to the Riemannian metric ( , ) on M , and 
[u�] stands for the coset of u� in DΩ1(M, Γ) / DΩ1

ex(M, Γ).
2. The inertia operator I : DSVect(M) → DSVect(M)∗ is an isomorphism of vector 

bundles.

Proof. By definition of the inertia operator, for u, v ∈ DSVect(M, Γ), one has

〈I(u), v〉 = 〈u, v〉L2 =
∫
M

(u, v)μ =
∫
M

ivu
�μ .

This means that the functional I(u) coincides with the functional represented by the 
coset of u� ∈ DΩ1(M, Γ), proving the first statement. Further, the inertia operator I
has an inverse given by [α] → α#, where α ∈ [α] is the co-closed representative (see 
Proposition 6.17). So, I is an isomorphism of vector bundles, as desired. �

Since the inertia operator is invertible, we also obtain an L2-metric on DSVect(M)∗, 
and the corresponding Euler–Arnold Hamiltonian

H([α]) := 1
2 〈α, α〉L2 ,

where α ∈ [α] is the co-closed representative.

Theorem 7.2. The Euler–Arnold equation corresponding to the L2-metric on DSVect(M)
written in terms of a coset [α] ∈ DSVect(M)∗Γ reads

{
∂R
t [α] + [iudRα + 1

2d
Riuα] = 0 ,

∂tΓ = #u ,
(27)
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where α ∈ [α] is the co-closed representative, and u = α# is the corresponding divergence-
free fluid velocity field. It is a Hamiltonian equation on the algebroid dual DSVect(M)∗
with respect to the natural Poisson structure described above and the energy Hamiltonian 
function H.

Remark 7.3. Note that singular Hodge decomposition (11) gives us a way to choose a 
canonical representative α ∈ DΩ1(M, Γ) in every coset [α] ∈ DSVect(M)∗Γ. Therefore, 
the derivative ∂R

t [α], which, in the absence of a metric, depends on the choice of a lift 
α, is now well-defined.

Note also that in the absence of a vortex sheet, the equation (27) is equivalent to 
∂t[α] + [iudα] = 0, and therefore to the Euler equation (5): ∂t[α] + Lu[α] = 0.

Proof of Theorem 7.2. It suffices to compute δH([α]) and apply the Hamiltonian opera-
tor. Let [α]s be an arbitrary smooth curve in DSVect(M)∗ with [α]s=0 = [α], and let Γs

be its projection to VS(M). Let also αs ∈ [α]s be the co-closed representative. Applying 
Lemma 5.2, we get

d

ds |s=0
H([α]s) = 1

2
d

ds

∣∣∣∣
s=0

∫
M

(αs, αs)μ

= 〈 d
R

ds

∣∣∣∣
s=0

[α]s , u 〉 + 〈 1
2 jump(α, α), d

ds

∣∣∣∣
s=0

Γs 〉 ,

meaning that

δFH([α]) = u, δBH([α]) = 1
2 [jump(α, α)] .

Here we use splitting (20) coming from the choice of a co-closed representative α ∈
DΩ1(M, Γ) in every coset [α] ∈ DSVect(M, Γ)∗. Now, to get (27), it suffices to apply 
the Hamiltonian operator (26) and notice that #∗[jump(α, α)] = [dRiuα] . Thus, the 
theorem is proved. �
Theorem 7.4. The Euler–Arnold equation corresponding to the L2-metric on DSVect(M)
written in terms of the fluid velocity field u := I−1([α]) ∈ DSVect(M) reads⎧⎪⎪⎨⎪⎪⎩

∂tu
+ + ∇u+u+ = −∇p+,

∂tu
− + ∇u−u− = −∇p−,

∂tΓ = #u ,

(28)

where p± ∈ C∞(D±
Γ ) are functions satisfying

p+|Γ = p−|Γ . (29)
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The functions p+, p− are defined uniquely modulo a common additive constant by the 
consistency conditions for (28) and the constraint (29).

Proof. By definition of the derivative ∂R
t [α], the first of equations (27) is equivalent to 

the condition

∂R
t α + iud

Rα + 1
2d

Riuα ∈ DΩ1
ex(M,Γ) ,

for the co-closed representative α ∈ [α]. Equivalently, this can be written as

∂R
t α + LR

u α− 1
2d

Riuα ∈ DΩ1
ex(M,Γ) .

Taking the metric dual vector field and applying the formula (Luu
� − 1

2d(u, u))� = ∇uu, 
we get

∂R
t u + ∇R

u u ∈ DGrad(M,Γ) ,

which is equivalent to the first two equations in (28) supplemented by condition (29). 
Thus, the first statement of the theorem is proved.

To prove that the functions p± are uniquely determined by u, rather than by 
its time derivative, we need to show that the projection of ∂R

t u ∈ DVect(M, Γ) to 
DGrad(M, Γ) can be expressed in terms of u. To that end, notice that ∂R

t u belongs to 
DSVect′(M, Γ), and we know the jump of its normal component by Proposition 6.14. 
On the other hand, the map jump⊥ defines an isomorphism between the quotient 
DSVect′(M, Γ) / DSVect(M, Γ) and the space of possible jumps TΓVS(M). Hence we 
know the coset of ∂R

t u in DSVect′(M, Γ) / DSVect(M, Γ), which means that we know its 
projection to DGrad(M, Γ), as desired.

Somewhat more explicitly, one has the decomposition DSVect′(M, Γ)
= DSVect(M, Γ) ⊕L2 (DSVect′(M, Γ) ∩ DGrad(M, Γ)). The latter space is exactly the 
space of single layer potentials, cf. Appendix A. By Theorem A.1 one can reconstruct 
the harmonic potentials s± (for a divergence-free vector field) continuous on Γ and sat-
isfying a given jump condition. Thus the DGrad(M, Γ) component of ∂R

t u is uniquely 
determined by the jump of the normal component, while the sum ∂R

t u + ∇R
u u defines 

the required p±. �
Recall that for a fluid velocity field u, the corresponding vorticity is the 2-form ω :=

du�. For a vector field u ∈ DSVect(M), the vorticity is a de Rham current given by

ω = d(χ+
Γα

+ + χ−
Γα

−) = χ+
Γω

+ + χ−
Γω

− + (α+ − α−) ∧ δΓ ,

where ω± = dα±.



A. Izosimov, B. Khesin / Advances in Mathematics 338 (2018) 447–501 491
Corollary 7.5 (Singular Kelvin’s theorem). For a fluid with an immersed vortex sheet, the 
regular part of the vorticity is transported by the flow:

∂tω
± + Luω

± = 0 .

Proof. Take the exterior derivative of both sides in the first of equations (27). �
In particular, the regular part of the vorticity remains in the same diffeomorphism 

class during the Euler–Arnold evolution. Note that the latter property in fact holds for 
any Hamiltonian system on DSVect(M)∗ and is related to the structure of symplectic 
leaves.

7.2. Pure vortex sheet motions as geodesics on the space of hypersurfaces

Now, we apply Proposition 4.29 to obtain a geodesic description of pure vortex sheet 
motions.

Proposition 7.6. Let [f ] ∈ T ∗
ΓVS(M) (recall that the latter space is C∞(Γ) / R). Then its 

image under the map #∗ : T ∗
ΓVS(M) → DSVect(M, Γ)∗ is given by

#∗[f ] :=
{
dRh | h ∈ DC∞(M), jump(h) = f

}
. (30)

Proof. Let [f ] ∈ T ∗
ΓVS(M), and let u ∈ DSVect(M, Γ). Then

〈#∗[f ], u〉 = 〈[f ],#u〉 =
∫
Γ

fiuμ .

By Lemma 5.4, for any h ∈ DC∞(M) such that jump(h) = f , we can rewrite the latter 
integral as ∫

M

(LR
u h)μ =

∫
M

(iudRh)μ .

The latter is exactly the coset on the right-hand side of (30) paired with u, as desired. �
By Proposition 6.17, every coset (30) has a unique co-closed representative α ∈

DΩ1
cc(M, Γ). Explicitly, it reads α = χ+

Γ df
++χ−

Γ df
−, where the functions f± ∈ C∞(D±

Γ )
are harmonic, have equal normal derivatives at Γ and satisfy f+|Γ − f−|Γ = f (these 
functions f± can be found as the solution of the double layer potential problem, see 
Theorem A.2 in Appendix A). The metric dual vector field v := I−1(#∗[f ]) thus has 
the form v = χ+

Γ∇f+ + χ−
Γ∇f−. This means that the symplectic leaf #∗(T ∗VS(M)) ⊂

DSVect(M)∗ is metric dual to velocity fields of pure vortex sheet motions.
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Theorem 7.7. Consider the vortex sheet algebroid DSVect(M) → VS(M), equipped with 
the L2-metric. Then the following holds:

1. Pure vortex sheets evolve along geodesics of a metric 〈 , 〉VS on VS(M) obtained as 
the projection of the L2-metric on DSVect(M). Explicitly, for a tangent vector ξ to 
the base this metric reads

〈ξ, ξ〉VS = 〈#−1(ξ),#−1(ξ)〉L2 =
∫
D+

Γ

(∇f+,∇f+)μ +
∫

D−
Γ

(∇f−,∇f−)μ ,

where Δf± = 0 in D±
Γ and the normal component of ∇f± at Γ is ξ. Equivalently,

〈ξ, ξ〉VS = 〈(NtD+ + NtD−)ξ, ξ〉 ,

where the Neumann-to-Dirichlet operators NtD± on the domains D±
Γ are regarded as 

maps TΓVS(M) → T ∗
ΓVS(M).

2. The anchor map #: (DSVect(M), 〈 , 〉L2) → (TVS(M), 〈 , 〉VS) is a Riemannian sub-
mersion of vector bundles.

3. For any Γ ∈ VS(M), the target mapping trg : (DSDiff(M)Γ, 〈 , 〉L2) → (VS(M), 〈 , 〉VS)
is a Riemannian submersion, see Fig. 2. Here 〈 , 〉L2 is the restriction of the 
right-invariant source-wise metric on DSDiff(M) corresponding to the L2-metric on 
DSVect(M).

Proof. This theorem follows from Proposition 4.29 employed in the setting of the alge-
broid DSVect(M) of discontinuous vector fields. To apply Proposition 4.29 we need to 
show that DSVect(M) = Ker# ⊕ (Ker#)⊥. Take any u ∈ DSVect(M, Γ). Consider the 
solutions f± ∈ C∞(D±

Γ ) of the Laplace equation with Neumann boundary conditions 
given by #u. Then one has

u = (u− χ+
Γ∇f+ − χ−

Γ∇f−) + (χ+
Γ∇f+ + χ−

Γ∇f−)

with the first bracket being in Ker# and the second bracket being in (Ker#)⊥, as 
desired. (Note that the above means the decomposition of the space DSVect(M, Γ) as 
“fields tangent to Γ” + “gradients of double layer potentials,” which is similar to the one 
described in the proof of Theorem 7.4.) �

Recall that DSDiff(M)Γ0 is the configuration space of a fluid with an immersed vortex 
sheet. The motion of the fluid follows the geodesics of the 〈 , 〉L2-metric. Pure vortex 
sheets thus correspond to horizontal (with respect to the target mapping) geodesics.

The following result shows that the first statement of Theorem 7.7 is equivalent to 
Corollary 3.8.
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Proposition 7.8. The metric 〈 , 〉VS constructed above coincides with the metric provided 
by Definition 3.6.

Proof. Denote the metric from Definition 3.6 by 〈 , 〉′VS. For ξ ∈ TΓVS(M), that metric 
reads

〈ξ, ξ〉′VS = inf {〈u, u〉L2 | u ∈ SVect(M), #u = ξ}

(here we regard SVect(M) as a subspace of DSVect(M, Γ)). But by Corollary 5.6 the sub-
space SVect(M) is L2-dense in DSVect(M, Γ), which allows one to rewrite the definition 
of the metric as

〈ξ, ξ〉′VS = inf {〈u, u〉L2 | u ∈ DSVect(M,Γ), #u = ξ} .

Furthermore, we have

{u ∈ DSVect(M,Γ) | #u = ξ} = #−1(ξ) + Ker#Γ ,

where #−1 is the inverse of the restriction of the anchor map to (Ker#)⊥, and Ker#Γ
stands for the kernel of the anchor map at the fiber DSVect(M)Γ. So,

〈ξ, ξ〉′VS = inf
{
〈u, u〉L2 | u ∈ #−1(ξ) + Ker#Γ

}
= 〈#−1(ξ),#−1(ξ)〉L2 = 〈ξ, ξ〉VS ,

where in the second equality we used that #−1(ξ) ∈ (Ker#Γ)⊥. �
7.3. Irrotational flows with vortex sheets as a Newtonian system in a magnetic field

In this section we consider flows with vortex sheets which are irrotational outside of 
the vortex sheet. In terms of the vector field u = χ+

Γu
+ + χ−

Γ u
− ∈ DSVect(M) this 

means that its smooth parts u± ∈ SVect(D±
Γ ) are irrotational (i.e. locally potential or, 

equivalently, harmonic), while in terms of the dual coset [α] := I(u) ∈ DSVect(M)∗
this means that dα± = 0 for some (equivalently, any) form χ+

Γα
+ + χ−

Γα
− ∈ [α]. As 

follows from Corollary 7.5, the space of such cosets is invariant under the Euler–Arnold 
flow (27). Moreover, assume that there is a canonical way to identify the cohomology 
groups H1(D±

Γ , R) for different Γ’s (this happens when the Gauss–Manin connection in 
the bundles H1(D±

Γ , R) → VS(M) has trivial monodromy).

Proposition 7.9. The cohomolgy classes of 1-forms α± in H1(D±
Γ , R) are invariants of 

the Euler–Arnold flow. In other words, in the irrotational case the Euler–Arnold flow 
(27) on DSVect(M)∗ restricts to the affine subbundle

DSVect(M)∗θ± := {[χ+
Γα

+ + χ−
Γα

−] | dα+ = dα− = 0, [α+] = θ+, [α−] = θ−}
⊂ DSVect(M)∗ ,
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Fig. 6. An irrotational steady solution with a vortex sheet. This solution delivers the global maximum of the 
corresponding potential P on VS(M).

where θ± ∈ H1(D±
Γ , R) are fixed cohomology classes.

Proof. It is easy to see from (27) that the integrals of α± over closed cycles are dynam-
ically invariant, provided that these cycles stay away from Γ. �

Notice also that DSVect(M)∗θ± = A + #∗(T ∗VS(M)) for any section A of
DSVect(M)∗θ± . Furthermore, the metric allows us to choose the section A in a canonical 
way: for any Γ ∈ VS(M) there exists a unique form α⊥

Γ := χ+
Γα

+
Γ + χ−

Γα
−
Γ , where the 

1-forms α±
Γ are harmonic, belong to the cohomology classes θ±, and vanish in the normal 

direction to Γ. Note that the form α⊥
Γ chosen in such a way is L2-orthogonal to the space 

#∗(T ∗VS(M)). We then set A(Γ) to be the coset of α⊥
Γ . This gives an identification 

DSVect(M)∗θ± � #∗(T ∗VS(M)). The latter image #∗(T ∗VS(M)) can be identified with 
T ∗VS(M) itself, since the map #∗ is injective.

It turns out that with this identification the Euler–Arnold flow on DSVect(M)∗θ± can 
be described as a Newtonian system in a magnetic field. The corresponding potential 
P : VS(M) → R is given by

P(Γ) := 1
2 〈α

⊥
Γ , α

⊥
Γ 〉L2 ,

while the magnetic term is defined as follows. Take any ξ ∈ TΓVS(M). Then, since 
α⊥

Γ = χ+
Γα

+
Γ +χ−

Γα
−
Γ , where the 1-forms α±

Γ are closed and belong to the fixed cohomology 
classes, it follows that the derivative ξ · α⊥

Γ of α⊥
Γ with respect to Γ in the direction ξ

has the form χ+
Γ df

+ + χ−
Γ df

−, which means that [ξ · α⊥
Γ ] ∈ #∗(T ∗

ΓVS(M)) � T ∗
ΓVS(M). 

Then, for any ξ1, ξ2 ∈ TΓVS(M), we set

Ω(ξ1, ξ2) := 〈[ξ1 · α⊥
Γ ], ξ2〉 − 〈[ξ2 · α⊥

Γ ], ξ1〉 .

One can check that this skew-symmetric 2-form on VS(M) is closed. Thus, it defines a 
symplectic structure on T ∗VS(M) by the formula Ωmag := Ωcan + π∗Ω, where Ωcan is 
the canonical symplectic form on T ∗VS(M) and π : T ∗VS(M) → VS(M) is the canonical 
projection.

Theorem 7.10. The evolution of a fluid with a vortex sheet defined by an irrotational 
initial vector field outside of the sheet is a Hamiltonian system on T ∗VS(M) with sym-
plectic structure given by Ωmag := Ωcan + π∗Ω and the Hamiltonian function given by 
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H := K + π∗P, where K is the kinetic energy corresponding to the metric 〈 , 〉VS, and P
is the potential term defined above.

Remark 7.11. In the particular case when the flow is globally potential outside of the 
vortex sheet, this is Theorem 7.7. In this case, P = 0 and Ω = 0. In the general case of 
locally potential flow with a vortex sheet, the fluid evolution in this case can be regarded 
as motion on VS(M) under the influence of potential P and magnetic field Ω. Note 
that a mechanical analog of this system is a charged particle q moving in a magnetic 
field depending on q in the presence of a potential field, i.e. a Hamiltonian system with 
Hamiltonian of the form “kinetic energy” + “potential energy” in the twisted symplectic 
structure.

Remark 7.12. In the case when the monodromy of the Gauss–Manin connection in 
H1(D±

Γ , R) → VS(M) is non-trivial, one should pass to a certain covering ṼS(M) →
VS(M) trivializing the monodromy.

Example 7.13. Consider a flat torus with vortex sheets being two meridians and dividing 
the torus into two parts, where the irrotational flow is zero in one of the parts and 
constant ∇φ parallel to the sheets in the other, see Fig. 6. Such a flow is only locally 
potential, as the would-be potential function φ is linear and multivalued on the torus. 
This is a steady solution of the Euler equation. In general, steady solutions with vortex 
sheets correspond to critical points of the potential P in the irrotational case. It is easy 
to show that the above case of plane parallel flow on the torus corresponds to the global 
maximum of P. On the other hand, in the pure vortex sheets case there cannot be any 
steady solutions (as there are no geodesics consisting of a single point).

The proof of the above theorem is based on a detailed study of symplectic leaves of 
DSVect(M)∗. This will be a subject of our forthcoming publication.

Appendix A. Layer potentials on Riemannian manifolds

In this appendix we establish existence of single and double layer potentials on com-
pact Riemannian manifolds. Although this result is definitely known to experts, we were 
not able to find a proof of the general case in literature, so we sketch the proof here.

Theorem A.1 (On the single layer potential). Let M be a compact Riemannian manifold 
without boundary, and let Γ ⊂ M be a closed hypersurface splitting M into two parts D+

Γ , 
D−

Γ . Let also ν be the unit normal field to Γ, and let f ∈ C∞
0 (Γ) be a smooth function on 

Γ with zero mean. Then there exist smooth up to Γ harmonic functions s± ∈ C∞(D±
Γ )

which satisfy

s+|Γ = s−|Γ , (∇s+ − ∇s−, ν) = f .
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Such functions s+, s− are unique up to a common additive constant. (The function s
equal to s+ in D+

Γ and s− in D−
Γ is called a single layer potential.)

Proof. In terms of the function g := s±|Γ, the problem can be reformulated as

(DtN+ + DtN−)g = f (A.1)

where DtN± : C∞(Γ) → C∞(Γ) are Dirichlet-to-Neumann maps associated with the 
domains D±

Γ . (We have a sum instead of a difference because an outward normal for D+
Γ

is an inward normal for D−
Γ .) Since functions s± can be reconstructed from g uniquely 

(as harmonic functions with boundary values s±|Γ = g), it suffices to show that given f
the equation (A.1) has a unique, up to an additive constant, solution g.

It is straightforward to verify that the Dirichlet-to-Neumann map is a non-negative 
formally self-adjoint operator whose kernel consists of constant functions. Therefore,

Ker (DtN+ + DtN−) = Ker DtN+ ∩ KerDtN− = R .

This proves the uniqueness part. To prove existence, we use that each of the Dirichlet-
to-Neumann maps DtN± is an elliptic pseudo-differential operator with principal symbol 
S : T ∗Γ → R given by the Riemannian length S(ξ) =

√
(ξ, ξ) (see [14], Proposition 1.2). 

It follows that DtN+ + DtN− is a pseudo-differential operator with principal symbol 
2
√

(ξ, ξ) and hence elliptic. Now recall that for any elliptic formally self-adjoint pseudo-
differential operator D : C∞(X) → C∞(X) on a compact Riemannian manifold X one 
has ImD = (KerD)⊥ (see, e.g., [22], Chapter 7, Section 10). Therefore,

Im (DtN+ + DtN−) = (Ker (DtN+ + DtN−))⊥ = C∞
0 (Γ).

Thus, (A.1) is solvable for any f with zero mean, as desired. �
Theorem A.2 (On the double layer potential). Let M be a compact Riemannian manifold 
without boundary, and let Γ ⊂ M be a closed hypersurface splitting M into two parts 
D+

Γ , D−
Γ . Let also ν be the unit normal field to Γ, and let g ∈ C∞(Γ) be arbitrary. Then 

there exist smooth up to Γ harmonic functions h± ∈ C∞(D±
Γ ) which satisfy

h+|Γ − h−|Γ = g , (∇h+, ν) = (∇h−, ν) .

Such functions h+, h− are unique up to a common additive constant. (The function h
equal to h+ in D+

Γ and h− in D−
Γ is called a double layer potential.)

Proof. By taking any harmonic functions g± ∈ C∞(D±
Γ ) with g+|Γ − g−|Γ = g, we 

reduce the question to the single layer potential problem in terms of the functions s± :=
g± − h±. �
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Appendix B. Lie algebroid geodesics as weak solutions of the Euler equation

In this appendix we prove that solutions of the algebroid Euler–Arnold equation (28)
can be regarded as weak solutions of the Euler equation (1). And conversely, weak so-
lutions with vortex sheet type discontinuity solve equations (28). We believe that this 
result is well known to experts, at least in some particular cases. However, we were not 
able to find the proof of the general case in the literature, so we provide it here.

Definition B.1. (cf. e.g. [21]) A time-dependent vector field u on M is said to be a weak 
solution for the incompressible Euler equation if u ∈ L2

loc(M × R),

〈u,∇f〉L2 = 0 ∀ f ∈ C∞(M) , (B.1)

and

+∞∫
−∞

〈u, ∂tv+∇uv〉L2 dt = 0 ∀ v ∈ C∞
c (M×R) such that div v(., t0) = 0 ∀ t0 ∈ R. (B.2)

Here L2
loc stands for square integrability on compact subsets, while C∞

c means C∞ with 
compact support.

There is a version of the definition for a finite time interval and adapted to an initial 
value problem. It is well-known that for C∞ (in both space and time) vector fields 
u these conditions are equivalent to the divergence-free condition on u and the Euler 
equation (1). For sufficiently regular solutions one can also restate condition (B.2) as 
follows:

Lemma B.2. Assume that a time-dependent vector field u ∈ L2
loc(M × R) is continuous 

in t with respect to the L2-norm. Furthermore, assume that for any divergence-free v ∈
C∞

c (M×R) the inner product 〈u, v〉L2 is a continuously differentiable function of t. Then 
(B.2) holds if and only if

∂t〈u,w〉L2 = 〈u,∇uw〉L2 ∀w ∈ SVect(M) . (B.3)

Proof. Assume that (B.2) holds. Let

Fv(t) := ∂t〈u, v〉L2 − 〈u, ∂tv + ∇uv〉L2 .

Then, by (B.2), for any time-dependent divergence-free smooth vector field v with com-
pact support we have 

∫∞
−∞ Fvdt = 0. Also notice that Fφv = φFv for any smooth scalar 

function φ = φ(t). So, we get that
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∞∫
−∞

φFvdt =
∞∫

−∞

Fφvdt = 0

for any C∞-smooth φ(t). Taking into account that Fv(t) is a continuous function, it 
follows that Fv(t) ≡ 0. Now, if w ∈ SVect(M), we take any smooth function φ = φ(t) �= 0
with compact support and consider v := φw. Then Fv ≡ 0 implies (B.3).

Conversely, assume that (B.3) holds. Take any time-dependent divergence-free smooth 
vector field v with compact support and write it as v = v(t0) + (t − t0)ṽ. Then Fv =
Fv(t0) + (t − t0)Fṽ. Notice that the first summand vanishes by (B.3), while the second 
summand vanishes for t = t0. Since t0 is arbitrary, it follows that Fv = 0 for any t. 
Integrating with respect to t, we get (B.2), as desired. �
Theorem B.3. Let u(t) be a smooth curve in DSVect(M). Then the following is true.

1. If u satisfies the algebroid Euler–Arnold equation (28) (with condition (29)), then it 
is a weak solution of the incompressible Euler equation.

2. If u is a weak solution of the incompressible Euler equation, and, in addition, its 
jump jump‖(u) is non-zero almost everywhere on Γ for every t, then u satisfies the 
algebroid Euler–Arnold equation (28) and condition (29).

Remark B.4. The assumption on jump‖(u) in the second part of the theorem can not be 
omitted. For instance, if u is a C∞-smooth solution of the Euler equation, and Γ = Γ(t)
is any smooth curve in VS(M), then the pair (u, Γ), viewed as a curve in DSVect(M)
(here we regard u as a vector field discontinuous across Γ, although there is no actual 
discontinuity), is a weak solution of the Euler equation, but does not, generally speaking, 
satisfy the last equation in (28).

The proof of Theorem B.3 is based on the following lemma.

Lemma B.5. Let M be a compact Riemannian manifold, and let Γ ⊂ M be a closed 
hypersurface. Let also v ∈ Vect(Γ) be a C∞-smooth vector field on Γ (tangent to Γ). 
Then there exists a C∞-smooth divergence-free extension of v on M with an arbitrary 
small L2-norm.

Proof. We choose an identification of a neighborhood of Γ in M with Γ × R such that 
the volume form on M splits into a product of the volume form on M and the standard 
volume form dz on R. Then, for any smooth function ψ(z) with compact support such 
that ψ(0) = 0 and ψ′(0) = 1, the vector field

un := ψ′(nz)v − 1
ψ(nz)div v ∂
n ∂z
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is a smooth divergence-free extension of v supported in a small neighborhood of Γ. 
Furthermore, we have ||un||L2 → 0 as n → ∞, as desired. �
Proof of Theorem B.3. Let u be any smooth curve in DSVect(M) and let w ∈ SVect(M). 
Then, by Lemma 5.2, we have

∂t〈u,w〉L2 = 〈∂R
t u,w〉L2 +

∫
Γ

jump(u,w)∂tΓ .

At the same time, by Lemma 5.4, we have∫
M

(u,∇uw)μ =
∫
M

(−(∇R
u u,w) + LR

u (u,w))μ = −〈∇R
u u,w〉L2 +

∫
Γ

jump(u,w)#u .

So, for a smooth curve in DSVect(M), condition (B.3) is equivalent to

〈∂R
t u + ∇R

u u,w〉L2 +
∫
Γ

jump(u,w)(∂tΓ − #u) = 0 ∀w ∈ SVect(M) . (B.4)

Now, notice that the latter holds for any solution of (28). So, (B.3) holds as well, and so 
does (B.2) by Lemma B.2. Finally, notice that (B.1) is true for any curve in DSVect(M)
due to the singular Hodge decomposition (12). This proves the first statement of the 
theorem.

To prove the second statement, we need to show that (B.4) implies equations (28). To 
that end, take w ∈ SVect(M) orthogonal to Γ at every point. Then, for such w, we have 
jump(u, w) = (jump‖(u), w) = 0, so the second summand in (B.4) vanishes. Therefore, 
the first summand vanishes as well. Since this holds for any w ∈ SVect(M) orthogonal 
to Γ, and such vector fields are L2-dense in SVect(M) be Lemma B.5, it follows that 
the first summand in (B.4) vanishes for every w ∈ SVect(M). But since SVect(M) is 
L2-dense in DSVect(M, Γ) (Corollary 5.6), we get that

∂R
t u + ∇R

u u ∈ DSVect(M,Γ)⊥ = DGrad(M,Γ) ,

which is equivalent to the first two of equations (28) supplemented by condition (29).
To derive the last equation, we use that the first summand in (B.4) vanishes for every 

w ∈ SVect(M), and thus so does the second summand. In particular, applying this for 
vector fields w tangent to Γ, we get∫

Γ

jump(u,w)(∂tΓ − #u) = 0 ∀w ∈ Vect(Γ) .

(Here we use that any vector field on Γ can be realized as a restriction of a divergence-free 
vector field.) Taking w := jump‖(u), we get
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∫
Γ

(jump‖(u), jump‖(u))(∂tΓ − #u) = 0 .

Since jump‖(u) �= 0 almost everywhere, it follows that #u = ∂tΓ, ending the proof. �
Appendix C. Vorticity metric on shape spaces

As we mentioned before, the metric 〈 , 〉VS on the space of vortex sheets VS(M) can 
be used to define a metric of hydrodynamical origin on the space of shapes in M .

Now we regard hypersurfaces Γ ∈ VS(M) as boundaries of DΓ := D+
Γ ⊂ M called 

shapes. Define the distance between two shapes of equal volume by means of the (weak) 
Riemannian metric VS(M). Note that this metric has an explicit description, which 
follows from the above consideration of submersion. By definition, to find the square 
length 〈v, v〉VS of a normal vector field v attached to the boundary Γ = ∂DΓ (and of 
total zero flux through Γ) one needs to find infimum of 

∫
M

(u, u) μ over all divergence-free 
fields u = χ+

Γu
+ + χ−

Γ u
− in M whose normal component to Γ is v. The following is a 

corollary of the submersion property.

Corollary C.1. The length of vectors tangent to the manifold VS(M) of vortex sheets at 
Γ can be found as the solution of the Neumann problem: for a normal vector field v = gν

attached to Γ (where ν is a fixed unit normal field) the infimum of 
∫
M

(u, u) μ is attained 
on gradient vector fields u± = ∇f± and

〈v, v〉VS =
∫
D+

Γ

(∇f+,∇f+)μ +
∫

D−
Γ

(∇f−,∇f−)μ ,

where Δf± = 0 in D±
Γ and ∂f±/∂ν|Γ = g.

Equivalently, by applying the Stokes formula, one can rewrite this metric via the 
Neumann-to-Dirichlet operators NtD± on the domains D±

Γ as

〈v, v〉VS = 〈g, (NtD+ + NtD−)g〉L2(Γ) .

This problem of reconstruction of a harmonic potential from the normal derivative 
data requires an integration of the fundamental solution in M against the boundary 
data over Γ. So this metric is non-local in terms of v. Since the Neumann-to-Dirichlet 
operators NtD± have order −1 as pseudodifferential operators on the boundary Γ, the 
corresponding metric is H−1/2-like. It is interesting to compare it with other metrics on 
shape spaces (see e.g. [12]), where (local) metrics of Hs-type with s ≥ 0 are usually used.

Note that by regarding shapes Γ = ∂DΓ as measures μΓ supported on DΓ ⊂ M one 
can define the Wasserstein distance between the shapes. Then Wasserstein’s Dist(μΓ, μΓ̃)
is not greater than the distance between Γ and Γ̃ in the sense of the 〈 , 〉VS-metric, cf. 
[16]. This follows from the definition: in both cases one takes the L2-norm of the vector 
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fields moving the shape/mass, but in the Wasserstein distance one minimizes over all, 
not necessarily volume-preserving, diffeomorphisms of M .
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